論文の概要: Unconditional Truthfulness: Learning Unconditional Uncertainty of Large Language Models
- arxiv url: http://arxiv.org/abs/2408.10692v2
- Date: Tue, 21 Oct 2025 08:51:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:02.228736
- Title: Unconditional Truthfulness: Learning Unconditional Uncertainty of Large Language Models
- Title(参考訳): 非条件真理性:大規模言語モデルの非条件不確かさを学習する
- Authors: Artem Vazhentsev, Ekaterina Fadeeva, Rui Xing, Gleb Kuzmin, Ivan Lazichny, Alexander Panchenko, Preslav Nakov, Timothy Baldwin, Maxim Panov, Artem Shelmanov,
- Abstract要約: 我々は、注意マップ、現在の生成ステップにおける確率、および以前に生成されたトークンから繰り返し計算された不確実性スコアを利用する回帰モデルを訓練する。
評価の結果,提案手法は選択的生成に極めて有効であり,教師なしアプローチと教師なしアプローチに比較して大幅な改善が得られた。
- 参考スコア(独自算出の注目度): 104.55763564037831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification (UQ) has emerged as a promising approach for detecting hallucinations and low-quality output of Large Language Models (LLMs). However, obtaining proper uncertainty scores is complicated by the conditional dependency between the generation steps of an autoregressive LLM because it is hard to model it explicitly. Here, we propose to learn this dependency from attention-based features. In particular, we train a regression model that leverages LLM attention maps, probabilities on the current generation step, and recurrently computed uncertainty scores from previously generated tokens. To incorporate the recurrent features, we also suggest a two-staged training procedure. Our experimental evaluation on ten datasets and three LLMs shows that the proposed method is highly effective for selective generation, achieving substantial improvements over rivaling unsupervised and supervised approaches.
- Abstract(参考訳): 不確実性定量化(UQ)は,Large Language Models(LLMs)の幻覚と低品質出力を検出するための有望なアプローチとして登場した。
しかし, 自己回帰型LCMの生成段階間の条件依存性は, 明確にモデル化することが困難であるため, 適切な不確実性スコアを得るには複雑である。
本稿では,この依存性を注目機能から学ぶことを提案する。
特に、LLMアテンションマップ、現在の生成ステップにおける確率、および以前に生成されたトークンから繰り返し計算された不確実性スコアを利用する回帰モデルを訓練する。
再帰的な特徴を取り入れるために,2段階のトレーニング手順を提案する。
提案手法は,10個のデータセットと3個のLCMを用いて評価した結果,提案手法は選択的生成に極めて有効であり,教師なしアプローチと教師なしアプローチに比較して大幅な改善が得られた。
関連論文リスト
- Towards Harmonized Uncertainty Estimation for Large Language Models [22.58034272573749]
不確実性推定によって世代間の信頼性を定量化することが不可欠である。
CUE(Corrector for Uncertainity Estimation:不確かさ推定のためのコレクタ)を提案する。
論文 参考訳(メタデータ) (2025-05-25T10:17:57Z) - Token-Level Uncertainty Estimation for Large Language Model Reasoning [24.56760223952017]
大きな言語モデル(LLM)は印象的な機能を示していますが、その出力品質はさまざまなアプリケーションシナリオで相容れないままです。
本稿では, LLMの自己評価と, 数学的推論における生成品質の自己向上を可能にするトークンレベルの不確実性推定フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-16T22:47:32Z) - Assessing Correctness in LLM-Based Code Generation via Uncertainty Estimation [0.0]
LLM生成符号の正確性のプロキシとして不確実性推定を検討する。
自然言語生成からコード生成領域への2つの最先端技術を適用する。
これらの手法を用いて計算した不確実性と正確性との間には強い相関関係があることが示唆された。
論文 参考訳(メタデータ) (2025-02-17T10:03:01Z) - Uncertainty Quantification for LLMs through Minimum Bayes Risk: Bridging Confidence and Consistency [66.96286531087549]
大規模言語モデル(LLM)のための不確実性定量化(UQ)手法は、様々なアプローチを含んでいる。
本稿では,モデル信頼度と出力整合性を統合する新しい手法を提案する。
我々は,質問応答,抽象要約,機械翻訳など,様々なタスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2025-02-07T14:30:12Z) - Enhancing Trust in Large Language Models with Uncertainty-Aware Fine-Tuning [10.457661605916435]
大規模言語モデル(LLM)は、その印象的な推論と質問応答能力によって自然言語処理の分野に革命をもたらした。
LLMは時に、幻覚として知られる、信頼できるが誤った情報を生成する傾向にある。
本稿では,決定論の原理に基づく不確実性を考慮した因果的言語モデリング損失関数を提案する。
論文 参考訳(メタデータ) (2024-12-03T23:14:47Z) - Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
本稿では,マルコフ決定過程の動的状態を予測するために,事前学習した大規模言語モデルをどのように活用することができるかを検討する。
本稿では,モデルに基づく政策評価とデータ強化型オフ政治強化学習という2つの強化学習環境における概念実証の応用について述べる。
論文 参考訳(メタデータ) (2024-10-15T15:46:53Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - UBench: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions [10.28688988951815]
大規模言語モデル(LLM)の不確実性を評価するための新しいベンチマークであるUBenchを紹介する。
他のベンチマークとは異なり、UBenchは信頼区間に基づいている。知識、言語、理解、推論能力にまたがる11,978の多重選択質問を含んでいる。
1) 信頼性区間に基づく手法は不確実性定量化に極めて有効である; 2) 不確実性に関して、優れたオープンソースモデルは、クローズドソースモデルと競合する性能を示す; 3) CoT と RP は、モデル信頼性を改善するための潜在的方法を示し、温度変化の影響は普遍的な規則に従わない。
論文 参考訳(メタデータ) (2024-06-18T16:50:38Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
言語モデル(LM)の最近の進歩により、複雑なNLPタスクの品質が大幅に向上した。
Cascadingは、より好ましいコスト品質のトレードオフを達成するためのシンプルな戦略を提供する。
トークンレベルの不確実性を学習後遅延ルールに組み込むことで,単純な集約戦略を著しく上回ることを示す。
論文 参考訳(メタデータ) (2024-04-15T21:02:48Z) - SPUQ: Perturbation-Based Uncertainty Quantification for Large Language
Models [9.817185255633758]
大規模言語モデル(LLM)がますます普及し、顕著なテキスト生成機能を提供している。
プレッシャーの課題は、自信を持って間違った予測をする傾向にある。
本稿では,浮腫とてんかんの両不確実性に対処するために,新しいUQ法を提案する。
その結果,モデルキャリブレーションは大幅に改善し,予測誤差(ECE)は平均50%減少した。
論文 参考訳(メタデータ) (2024-03-04T21:55:22Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。