MsMemoryGAN: A Multi-scale Memory GAN for Palm-vein Adversarial Purification
- URL: http://arxiv.org/abs/2408.10694v1
- Date: Tue, 20 Aug 2024 09:46:30 GMT
- Title: MsMemoryGAN: A Multi-scale Memory GAN for Palm-vein Adversarial Purification
- Authors: Huafeng Qin, Yuming Fu, Huiyan Zhang, Mounim A. El-Yacoubi, Xinbo Gao, Qun Song, Jun Wang,
- Abstract summary: We propose a novel defense model named MsMemoryGAN to filter the perturbations from adversarial samples before recognition.
MsMemoryGAN learns to reconstruct the input by merely using fewer prototypical elements of the normal patterns recorded in the memory.
Our approach removes a wide variety of adversarial perturbations, allowing vein classifiers to achieve the highest recognition accuracy.
- Score: 40.80205521005344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have recently achieved promising performance in the vein recognition task and have shown an increasing application trend, however, they are prone to adversarial perturbation attacks by adding imperceptible perturbations to the input, resulting in making incorrect recognition. To address this issue, we propose a novel defense model named MsMemoryGAN, which aims to filter the perturbations from adversarial samples before recognition. First, we design a multi-scale autoencoder to achieve high-quality reconstruction and two memory modules to learn the detailed patterns of normal samples at different scales. Second, we investigate a learnable metric in the memory module to retrieve the most relevant memory items to reconstruct the input image. Finally, the perceptional loss is combined with the pixel loss to further enhance the quality of the reconstructed image. During the training phase, the MsMemoryGAN learns to reconstruct the input by merely using fewer prototypical elements of the normal patterns recorded in the memory. At the testing stage, given an adversarial sample, the MsMemoryGAN retrieves its most relevant normal patterns in memory for the reconstruction. Perturbations in the adversarial sample are usually not reconstructed well, resulting in purifying the input from adversarial perturbations. We have conducted extensive experiments on two public vein datasets under different adversarial attack methods to evaluate the performance of the proposed approach. The experimental results show that our approach removes a wide variety of adversarial perturbations, allowing vein classifiers to achieve the highest recognition accuracy.
Related papers
- Appearance Blur-driven AutoEncoder and Motion-guided Memory Module for Video Anomaly Detection [14.315287192621662]
Video anomaly detection (VAD) often learns the distribution of normal samples and detects the anomaly through measuring significant deviations.
Most VADs cannot cope with cross-dataset validation for new target domains.
We propose a novel VAD method with a motion-guided memory module to achieve cross-dataset validation with zero-shot.
arXiv Detail & Related papers (2024-09-26T07:48:20Z) - Adversarially Diversified Rehearsal Memory (ADRM): Mitigating Memory Overfitting Challenge in Continual Learning [0.0]
Continual learning focuses on learning non-stationary data distribution without forgetting previous knowledge.
Rehearsal-based approaches are commonly used to combat catastrophic forgetting.
We introduce the Adversarially Diversified Rehearsal Memory to address the memory overfitting challenge.
arXiv Detail & Related papers (2024-05-20T06:56:43Z) - MEMTO: Memory-guided Transformer for Multivariate Time Series Anomaly
Detection [6.16984478518058]
MEMTO is a memory-guided Transformer that learns the degree to which each memory item should be updated in response to the input data.
We evaluate our proposed method on five real-world datasets from diverse domains.
arXiv Detail & Related papers (2023-12-05T06:28:19Z) - What do larger image classifiers memorise? [64.01325988398838]
We show that training examples exhibit an unexpectedly diverse set of memorisation trajectories across model sizes.
We find that knowledge distillation, an effective and popular model compression technique, tends to inhibit memorisation, while also improving generalisation.
arXiv Detail & Related papers (2023-10-09T01:52:07Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
Anomaly detection in videos is a significant yet challenging problem.
Existing reconstruction-based methods rely on old-fashioned convolutional autoencoders.
We propose a new autoencoder model for enhanced consecutive frame reconstruction.
arXiv Detail & Related papers (2023-01-28T01:57:57Z) - Divide-and-Assemble: Learning Block-wise Memory for Unsupervised Anomaly
Detection [40.778313918994996]
Reconstruction-based methods play an important role in unsupervised anomaly detection in images.
In this work, we interpret the reconstruction of an image as a divide-and-assemble procedure.
We achieve state-of-the-art performance on the challenging MVTec AD dataset.
arXiv Detail & Related papers (2021-07-28T01:14:32Z) - Anomaly Detection with Prototype-Guided Discriminative Latent Embeddings [29.93983580779689]
We present a novel approach for anomaly detection, which utilizes discriminative prototypes of normal data to reconstruct video frames.
In this way, the model will favor the reconstruction of normal events and distort the reconstruction of abnormal events.
We evaluate the effectiveness of our method on three benchmark datasets and experimental results demonstrate the proposed method outperforms the state-of-the-art.
arXiv Detail & Related papers (2021-04-30T12:16:52Z) - Depth Guided Adaptive Meta-Fusion Network for Few-shot Video Recognition [86.31412529187243]
Few-shot video recognition aims at learning new actions with only very few labeled samples.
We propose a depth guided Adaptive Meta-Fusion Network for few-shot video recognition which is termed as AMeFu-Net.
arXiv Detail & Related papers (2020-10-20T03:06:20Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.