Appearance Blur-driven AutoEncoder and Motion-guided Memory Module for Video Anomaly Detection
- URL: http://arxiv.org/abs/2409.17608v1
- Date: Thu, 26 Sep 2024 07:48:20 GMT
- Title: Appearance Blur-driven AutoEncoder and Motion-guided Memory Module for Video Anomaly Detection
- Authors: Jiahao Lyu, Minghua Zhao, Jing Hu, Xuewen Huang, Shuangli Du, Cheng Shi, Zhiyong Lv,
- Abstract summary: Video anomaly detection (VAD) often learns the distribution of normal samples and detects the anomaly through measuring significant deviations.
Most VADs cannot cope with cross-dataset validation for new target domains.
We propose a novel VAD method with a motion-guided memory module to achieve cross-dataset validation with zero-shot.
- Score: 14.315287192621662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection (VAD) often learns the distribution of normal samples and detects the anomaly through measuring significant deviations, but the undesired generalization may reconstruct a few anomalies thus suppressing the deviations. Meanwhile, most VADs cannot cope with cross-dataset validation for new target domains, and few-shot methods must laboriously rely on model-tuning from the target domain to complete domain adaptation. To address these problems, we propose a novel VAD method with a motion-guided memory module to achieve cross-dataset validation with zero-shot. First, we add Gaussian blur to the raw appearance images, thereby constructing the global pseudo-anomaly, which serves as the input to the network. Then, we propose multi-scale residual channel attention to deblur the pseudo-anomaly in normal samples. Next, memory items are obtained by recording the motion features in the training phase, which are used to retrieve the motion features from the raw information in the testing phase. Lastly, our method can ignore the blurred real anomaly through attention and rely on motion memory items to increase the normality gap between normal and abnormal motion. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed method. Compared with cross-domain methods, our method achieves competitive performance without adaptation during testing.
Related papers
- MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection [0.0]
A new meth-odology for detecting surface defects in in-dustrial settings is introduced, referred to as Memory Augmentation and Pseudo-Labeling(MAPL)
The methodology first in-troduces an anomaly simulation strategy, which significantly improves the model's ability to recognize rare or unknown anom-aly types.
An end-to-end learning framework is employed by MAPL to identify the abnormal regions directly from the input data.
arXiv Detail & Related papers (2024-05-10T02:26:35Z) - Continuous Memory Representation for Anomaly Detection [24.58611060347548]
CRAD is a novel anomaly detection method for representing normal features within a "continuous" memory.
In an evaluation using the MVTec AD dataset, CRAD significantly outperforms the previous state-of-the-art method by reducing 65.0% of the error for multi-class unified anomaly detection.
arXiv Detail & Related papers (2024-02-28T12:38:44Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - Unsupervised Video Anomaly Detection with Diffusion Models Conditioned
on Compact Motion Representations [17.816344808780965]
unsupervised video anomaly detection (VAD) problem involves classifying each frame in a video as normal or abnormal, without any access to labels.
To accomplish this, proposed method employs conditional diffusion models, where the input data is features extracted from pre-trained network.
Our method utilizes a data-driven threshold and considers a high reconstruction error as an indicator of anomalous events.
arXiv Detail & Related papers (2023-07-04T07:36:48Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - A Video Anomaly Detection Framework based on Appearance-Motion Semantics
Representation Consistency [18.06814233420315]
We propose a framework that uses normal data's appearance and motion semantic representation consistency to handle anomaly detection.
We design a two-stream encoder to encode the appearance and motion information representations of normal samples.
Lower consistency of appearance and motion features of anomalous samples can be used to generate predicted frames with larger reconstruction error.
arXiv Detail & Related papers (2022-04-08T15:59:57Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Learning Memory-guided Normality for Anomaly Detection [33.77435699029528]
We present an unsupervised learning approach to anomaly detection that considers the diversity of normal patterns explicitly.
We also present novel feature compactness and separateness losses to train the memory, boosting the discriminative power of both memory items and deeply learned features from normal data.
arXiv Detail & Related papers (2020-03-30T05:30:09Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.