TrackNeRF: Bundle Adjusting NeRF from Sparse and Noisy Views via Feature Tracks
- URL: http://arxiv.org/abs/2408.10739v1
- Date: Tue, 20 Aug 2024 11:14:23 GMT
- Title: TrackNeRF: Bundle Adjusting NeRF from Sparse and Noisy Views via Feature Tracks
- Authors: Jinjie Mai, Wenxuan Zhu, Sara Rojas, Jesus Zarzar, Abdullah Hamdi, Guocheng Qian, Bing Li, Silvio Giancola, Bernard Ghanem,
- Abstract summary: TrackNeRF sets a new benchmark in noisy and sparse view reconstruction.
TrackNeRF shows significant improvements over the state-of-the-art BARF and SPARF.
- Score: 57.73997367306271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance fields (NeRFs) generally require many images with accurate poses for accurate novel view synthesis, which does not reflect realistic setups where views can be sparse and poses can be noisy. Previous solutions for learning NeRFs with sparse views and noisy poses only consider local geometry consistency with pairs of views. Closely following \textit{bundle adjustment} in Structure-from-Motion (SfM), we introduce TrackNeRF for more globally consistent geometry reconstruction and more accurate pose optimization. TrackNeRF introduces \textit{feature tracks}, \ie connected pixel trajectories across \textit{all} visible views that correspond to the \textit{same} 3D points. By enforcing reprojection consistency among feature tracks, TrackNeRF encourages holistic 3D consistency explicitly. Through extensive experiments, TrackNeRF sets a new benchmark in noisy and sparse view reconstruction. In particular, TrackNeRF shows significant improvements over the state-of-the-art BARF and SPARF by $\sim8$ and $\sim1$ in terms of PSNR on DTU under various sparse and noisy view setups. The code is available at \href{https://tracknerf.github.io/}.
Related papers
- CT-NeRF: Incremental Optimizing Neural Radiance Field and Poses with Complex Trajectory [12.460959809597213]
We propose CT-NeRF, an incremental reconstruction optimization pipeline using only RGB images without pose and depth input.
We evaluate the performance of CT-NeRF on two real-world datasets, NeRFBuster and Free-Dataset.
arXiv Detail & Related papers (2024-04-22T06:07:06Z) - CombiNeRF: A Combination of Regularization Techniques for Few-Shot Neural Radiance Field View Synthesis [1.374796982212312]
Neural Radiance Fields (NeRFs) have shown impressive results for novel view synthesis when a sufficiently large amount of views are available.
We propose CombiNeRF, a framework that synergically combines several regularization techniques, some of them novel, in order to unify the benefits of each.
We show that CombiNeRF outperforms the state-of-the-art methods with few-shot settings in several publicly available datasets.
arXiv Detail & Related papers (2024-03-21T13:59:00Z) - MuRF: Multi-Baseline Radiance Fields [117.55811938988256]
We present Multi-Baseline Radiance Fields (MuRF), a feed-forward approach to solving sparse view synthesis.
MuRF achieves state-of-the-art performance across multiple different baseline settings.
We also show promising zero-shot generalization abilities on the Mip-NeRF 360 dataset.
arXiv Detail & Related papers (2023-12-07T18:59:56Z) - Re-Nerfing: Improving Novel View Synthesis through Novel View Synthesis [80.3686833921072]
Recent neural rendering and reconstruction techniques, such as NeRFs or Gaussian Splatting, have shown remarkable novel view synthesis capabilities.
With fewer images available, these methods start to fail since they can no longer correctly triangulate the underlying 3D geometry.
We propose Re-Nerfing, a simple and general add-on approach that leverages novel view synthesis itself to tackle this problem.
arXiv Detail & Related papers (2023-12-04T18:56:08Z) - Improving Neural Radiance Fields with Depth-aware Optimization for Novel
View Synthesis [12.3338393483795]
We propose SfMNeRF, a method to better synthesize novel views as well as reconstruct the 3D-scene geometry.
SfMNeRF employs the epipolar, photometric consistency, depth smoothness, and position-of-matches constraints to explicitly reconstruct the 3D-scene structure.
Experiments on two public datasets demonstrate that SfMNeRF surpasses state-of-the-art approaches.
arXiv Detail & Related papers (2023-04-11T13:37:17Z) - SPARF: Large-Scale Learning of 3D Sparse Radiance Fields from Few Input
Images [62.64942825962934]
We present SPARF, a large-scale ShapeNet-based synthetic dataset for novel view synthesis.
We propose a novel pipeline (SuRFNet) that learns to generate sparse voxel radiance fields from only few views.
SuRFNet employs partial SRFs from few/one images and a specialized SRF loss to learn to generate high-quality sparse voxel radiance fields.
arXiv Detail & Related papers (2022-12-18T14:56:22Z) - SPARF: Neural Radiance Fields from Sparse and Noisy Poses [58.528358231885846]
We introduce Sparse Pose Adjusting Radiance Field (SPARF) to address the challenge of novel-view synthesis.
Our approach exploits multi-view geometry constraints in order to jointly learn the NeRF and refine the camera poses.
arXiv Detail & Related papers (2022-11-21T18:57:47Z) - SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single
Image [85.43496313628943]
We present a Single View NeRF (SinNeRF) framework consisting of thoughtfully designed semantic and geometry regularizations.
SinNeRF constructs a semi-supervised learning process, where we introduce and propagate geometry pseudo labels.
Experiments are conducted on complex scene benchmarks, including NeRF synthetic dataset, Local Light Field Fusion dataset, and DTU dataset.
arXiv Detail & Related papers (2022-04-02T19:32:42Z) - pixelNeRF: Neural Radiance Fields from One or Few Images [20.607712035278315]
pixelNeRF is a learning framework that predicts a continuous neural scene representation conditioned on one or few input images.
We conduct experiments on ShapeNet benchmarks for single image novel view synthesis tasks with held-out objects.
In all cases, pixelNeRF outperforms current state-of-the-art baselines for novel view synthesis and single image 3D reconstruction.
arXiv Detail & Related papers (2020-12-03T18:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.