Fast Algorithms and Implementations for Computing the Minimum Distance of Quantum Codes
- URL: http://arxiv.org/abs/2408.10743v1
- Date: Tue, 20 Aug 2024 11:24:30 GMT
- Title: Fast Algorithms and Implementations for Computing the Minimum Distance of Quantum Codes
- Authors: Fernando Hernando, Gregorio Quintana-OrtÃ, Markus Grassl,
- Abstract summary: The distance of a stabilizer quantum code determines the number of errors that can be detected and corrected.
We present three new fast algorithms and implementations for computing the symplectic distance of the associated classical code.
- Score: 43.96687298077534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The distance of a stabilizer quantum code is a very important feature since it determines the number of errors that can be detected and corrected. We present three new fast algorithms and implementations for computing the symplectic distance of the associated classical code. Our new algorithms are based on the Brouwer-Zimmermann algorithm. Our experimental study shows that these new implementations are much faster than current state-of-the-art licensed implementations on single-core processors, multicore processors, and shared-memory multiprocessors. In the most computationally-demanding cases, the performance gain in the computational time can be larger than one order of magnitude. The experimental study also shows a good scalability on shared-memory parallel architectures.
Related papers
- Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantifying Grover speed-ups beyond asymptotic analysis [0.0]
We consider an approach that combines classical emulation with detailed complexity bounds that include all constants.
We apply our method to some simple quantum speedups of classical algorithms for solving the well-studied MAX-$k$-SAT optimization problem.
This requires rigorous bounds (including all constants) on the expected- and worst-case complexities of two important quantum sub-routines.
arXiv Detail & Related papers (2022-03-09T19:00:00Z) - Fragmented imaginary-time evolution for early-stage quantum signal
processors [0.0]
Simulating quantum imaginary-time evolution (QITE) is a major promise of quantum computation.
Our main contribution is a new generation of deterministic, high-precision QITE algorithms.
We present two QITE-circuit sub-routines with excellent complexity scaling.
arXiv Detail & Related papers (2021-10-25T18:02:24Z) - Deterministic Algorithms for Compiling Quantum Circuits with Recurrent
Patterns [0.0]
Current quantum processors are noisy, have limited coherence and imperfect gate implementations.
We present novel deterministic algorithms for compiling recurrent quantum circuit patterns in time.
Our solution produces unmatched results on RyRz circuits.
arXiv Detail & Related papers (2021-02-17T13:59:12Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
We explore which quantum algorithms for optimization might be most practical to try out on a small fault-tolerant quantum computer.
Our results discourage the notion that any quantum optimization realizing only a quadratic speedup will achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2020-07-14T22:54:04Z) - Refined bounds for algorithm configuration: The knife-edge of dual class
approximability [94.83809668933021]
We investigate how large should a training set be to ensure that a parameter's average metrics performance over the training set is close to its expected, future performance.
We show that if this approximation holds under the L-infinity norm, we can provide strong sample complexity bounds.
We empirically evaluate our bounds in the context of integer programming, one of the most powerful tools in computer science.
arXiv Detail & Related papers (2020-06-21T15:32:21Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.