Pluto and Charon: A Time and Memory Efficient Collaborative Edge AI Framework for Personal LLMs Fine-Tuning
- URL: http://arxiv.org/abs/2408.10746v1
- Date: Tue, 20 Aug 2024 11:30:12 GMT
- Title: Pluto and Charon: A Time and Memory Efficient Collaborative Edge AI Framework for Personal LLMs Fine-Tuning
- Authors: Bei Ouyang, Shengyuan Ye, Liekang Zeng, Tianyi Qian, Jingyi Li, Xu Chen,
- Abstract summary: Pluto and Charon (PAC) is a time and memory efficient collaborative edge AI framework for personal LLMs fine-tuning.
PAC implements a personal LLMs fine-tuning technique that is efficient in terms of parameters, time, and memory.
Extensive evaluation based on prototype implementation demonstrates that PAC remarkably outperforms state-of-the-art approaches.
- Score: 13.26886445965894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have unlocked a plethora of powerful applications at the network edge, such as intelligent personal assistants. Data privacy and security concerns have prompted a shift towards edge-based fine-tuning of personal LLMs, away from cloud reliance. However, this raises issues of computational intensity and resource scarcity, hindering training efficiency and feasibility. While current studies investigate parameter-efficient fine-tuning (PEFT) techniques to mitigate resource constraints, our analysis indicates that these techniques are not sufficiently resource-efficient for edge devices. To tackle these challenges, we propose Pluto and Charon (PAC), a time and memory efficient collaborative edge AI framework for personal LLMs fine-tuning. PAC breaks the resource wall of personal LLMs fine-tuning with a sophisticated algorithm-system co-design. (1) Algorithmically, PAC implements a personal LLMs fine-tuning technique that is efficient in terms of parameters, time, and memory. It utilizes Parallel Adapters to circumvent the need for a full backward pass through the LLM backbone. Additionally, an activation cache mechanism further streamlining the process by negating the necessity for repeated forward passes across multiple epochs. (2) Systematically, PAC leverages edge devices in close proximity, pooling them as a collective resource for in-situ personal LLMs fine-tuning, utilizing a hybrid data and pipeline parallelism to orchestrate distributed training. The use of the activation cache eliminates the need for forward pass through the LLM backbone,enabling exclusive fine-tuning of the Parallel Adapters using data parallelism. Extensive evaluation based on prototype implementation demonstrates that PAC remarkably outperforms state-of-the-art approaches, achieving up to 8.64x end-to-end speedup and up to 88.16% reduction in memory footprint.
Related papers
- Split Federated Learning Over Heterogeneous Edge Devices: Algorithm and Optimization [7.013344179232109]
Split Learning (SL) is a promising collaborative machine learning approach, enabling resource-constrained devices to train models without sharing raw data.
Current SL algorithms face limitations in training efficiency and suffer from prolonged latency.
We propose the Heterogeneous Split Federated Learning framework, which allows resource-constrained clients to train their personalized client-side models in parallel.
arXiv Detail & Related papers (2024-11-21T07:46:01Z) - Model Partition and Resource Allocation for Split Learning in Vehicular Edge Networks [24.85135243655983]
This paper proposes a novel U-shaped split federated learning (U-SFL) framework to address these challenges.
U-SFL is able to enhance privacy protection by keeping both raw data and labels on the vehicular user (VU) side.
To optimize communication efficiency, we introduce a semantic-aware auto-encoder (SAE) that significantly reduces the dimensionality of transmitted data.
arXiv Detail & Related papers (2024-11-11T07:59:13Z) - CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge Collaboration [1.6021932740447968]
Large Language Models (LLMs) have achieved remarkable success in serving end-users with human-like intelligence.
LLMs demand high computational resources, making it challenging to deploy them to satisfy various performance objectives.
We introduce CE-CoLLM, a novel cloud-edge collaboration framework that supports efficient and adaptive LLM inference for end-users at the edge.
arXiv Detail & Related papers (2024-11-05T06:00:27Z) - Enabling Efficient On-Device Fine-Tuning of LLMs Using Only Inference Engines [17.539008562641303]
Large Language Models (LLMs) are currently pre-trained and fine-tuned on large cloud servers.
Next frontier is LLM personalization, where a foundation model can be fine-tuned with user/task-specific data.
Fine-tuning on resource-constrained edge devices presents significant challenges due to substantial memory and computational demands.
arXiv Detail & Related papers (2024-09-23T20:14:09Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
Path planning is a fundamental scientific problem in robotics and autonomous navigation.
Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows.
We propose a new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs.
This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios.
arXiv Detail & Related papers (2024-06-20T01:24:30Z) - Edge Intelligence Optimization for Large Language Model Inference with Batching and Quantization [20.631476379056892]
Large Language Models (LLMs) are at the forefront of this movement.
LLMs require cloud hosting, which raises issues regarding privacy, latency, and usage limitations.
We present an edge intelligence optimization problem tailored for LLM inference.
arXiv Detail & Related papers (2024-05-12T02:38:58Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
"Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development.
This paper explores the "less is more" paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource constrained devices.
arXiv Detail & Related papers (2024-02-26T18:59:03Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
Machine learning algorithms are deployed at the network edge for training artificial intelligence (AI) models.
This paper focuses on the novel joint design of parameter (computation load) allocation and bandwidth allocation.
arXiv Detail & Related papers (2020-03-10T05:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.