FedShield-LLM: A Secure and Scalable Federated Fine-Tuned Large Language Model
- URL: http://arxiv.org/abs/2506.05640v1
- Date: Fri, 06 Jun 2025 00:05:05 GMT
- Title: FedShield-LLM: A Secure and Scalable Federated Fine-Tuned Large Language Model
- Authors: Md Jueal Mia, M. Hadi Amini,
- Abstract summary: Federated Learning (FL) offers a decentralized framework for training and fine-tuning Large Language Models (LLMs)<n>FL addresses privacy and security concerns while navigating challenges associated with the substantial computational demands of LLMs.<n>We propose a novel method, FedShield-LLM, that uses pruning with Fully Homomorphic Encryption (FHE) for Low-Rank Adaptation (LoRA) parameters.
- Score: 0.48342038441006796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) offers a decentralized framework for training and fine-tuning Large Language Models (LLMs) by leveraging computational resources across organizations while keeping sensitive data on local devices. It addresses privacy and security concerns while navigating challenges associated with the substantial computational demands of LLMs, which can be prohibitive for small and medium-sized organizations. FL supports the development of task-specific LLMs for cross-silo applications through fine-tuning but remains vulnerable to inference attacks, such as membership inference and gradient inversion, which threaten data privacy. Prior studies have utilized Differential Privacy (DP) in LLM fine-tuning, which, despite being effective at preserving privacy, can degrade model performance. To overcome these challenges, we propose a novel method, FedShield-LLM, that uses pruning with Fully Homomorphic Encryption (FHE) for Low-Rank Adaptation (LoRA) parameters, enabling secure computations on encrypted model updates while mitigating the attack surface by deactivating less important LoRA parameters. Furthermore, optimized federated algorithms for cross-silo environments enhance scalability and efficiency. Parameter-efficient fine-tuning techniques like LoRA substantially reduce computational and communication overhead, making FL feasible for resource-constrained clients. Experimental results show that the proposed method outperforms existing methods while maintaining robust privacy protection, enabling organizations to collaboratively train secure and efficient LLMs. The code and data are available at, https://github.com/solidlabnetwork/fedshield-llm
Related papers
- FuSeFL: Fully Secure and Scalable Cross-Silo Federated Learning [0.8686220240511062]
Federated Learning (FL) enables collaborative model training without centralizing client data, making it attractive for privacy-sensitive domains.<n>We present FuSeFL, a fully secure and scalable FL scheme designed for cross-silo settings.
arXiv Detail & Related papers (2025-07-18T00:50:44Z) - Federated Learning-Enabled Hybrid Language Models for Communication-Efficient Token Transmission [87.68447072141402]
Hybrid Language Models (HLMs) combine the low-latency efficiency of Small Language Models (SLMs) on edge devices with the high accuracy of Large Language Models (LLMs) on centralized servers.<n>We propose FedHLM, a communication-efficient HLM framework that integrates uncertainty-aware inference with Federated Learning (FL)
arXiv Detail & Related papers (2025-06-30T02:56:11Z) - SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks [17.77094760401298]
We study the vulnerability of fine-tuned large language models to membership inference attacks (MIAs)<n>We propose SOFT, a novel defense technique that mitigates privacy leakage by leveraging influential data selection with an adjustable parameter to balance utility preservation and privacy protection.
arXiv Detail & Related papers (2025-06-12T07:23:56Z) - A Federated Splitting Framework for LLMs: Security, Efficiency, and Adaptability [15.194518946737801]
We introduce FL-LLaMA, a secure, efficient, and adaptive federated split framework based on LLaMA2.<n>We employ client-batch and server-hierarchical strategies to achieve parallel training, along with attention-mask compression and KV cache mechanisms to accelerate inference.<n>Experiments on NLU, summarization and conversational QA tasks show that FL-LLaMA maintains performance comparable to centralized LLaMA2, and achieves up to 2x train speedups and 8x inference speedups.
arXiv Detail & Related papers (2025-05-21T15:58:08Z) - Decentralized Low-Rank Fine-Tuning of Large Language Models [14.75695352321115]
We propose Dec-LoRA, a decentralized fine-tuning algorithm for Large Language Models (LLMs) based Low-Rank Adaptation (LoRA)<n>Through experiments on BERT and LLaMA, we demonstrate that Dec-LoRA achieves comparable performance to centralized LoRA under various conditions.<n>These findings highlight the potential of Dec-LoRA for scalable fine-tuning in decentralized environments.
arXiv Detail & Related papers (2025-01-26T01:56:25Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - FedDTPT: Federated Discrete and Transferable Prompt Tuning for Black-Box Large Language Models [14.719919025265224]
Fine-tuning large language models (LLMs) with data from specific scenarios poses privacy leakage risks.
We propose for the first time a federated discrete and transferable prompt tuning, namely FedDTPT, for black-box large language models.
Our approach achieves higher accuracy, reduced communication overhead, and robustness to non-iid data in a black-box setting.
arXiv Detail & Related papers (2024-11-01T19:19:23Z) - EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
Federated Learning (FL) enables model training across decentralized devices by communicating solely local model updates to an aggregation server.
FL remains vulnerable to inference attacks during model update transmissions.
We present EncCluster, a novel method that integrates model compression through weight clustering with recent decentralized FE and privacy-enhancing data encoding.
arXiv Detail & Related papers (2024-06-13T14:16:50Z) - Enhancing Security and Privacy in Federated Learning using Low-Dimensional Update Representation and Proximity-Based Defense [23.280147155814955]
Federated Learning (FL) is a promising machine learning paradigm that allows data owners to collaboratively train models while keeping their data localized.<n>Despite its potential, FL faces challenges related to the trustworthiness of both clients and servers, particularly against curious or malicious adversaries.<n>We introduce a novel framework named FLURP, designed to address privacy preservation and resistance to Byzantine attacks in distributed learning environments.
arXiv Detail & Related papers (2024-05-29T06:46:10Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
Large language models (LLMs) have driven profound transformations in wireless networks.<n>Within wireless environments, the training of LLMs faces significant challenges related to security and privacy.<n>This paper presents a systematic analysis of the training stages of LLMs in wireless networks, including pre-training, instruction tuning, and alignment tuning.
arXiv Detail & Related papers (2024-04-20T02:30:21Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
Pre-trained large language models (LLMs) need fine-tuning to improve their responsiveness to natural language instructions.
FedKSeed employs zeroth-order optimization with a finite set of random seeds.
It significantly reduces transmission requirements between the server and clients to just a few random seeds.
arXiv Detail & Related papers (2023-12-11T13:03:21Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.