4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification
- URL: http://arxiv.org/abs/2004.10165v1
- Date: Tue, 21 Apr 2020 17:19:06 GMT
- Title: 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification
- Authors: Marcel Bengs and Nils Gessert and Alexander Schlaefer
- Abstract summary: We propose a 4D convolutional deep learning approach for ASD classification where we jointly learn from spatial and temporal data.
We employ 4D neural networks and convolutional-recurrent models which outperform a previous approach with an F1-score of 0.71 compared to an F1-score of 0.65.
- Score: 69.62333053044712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autism spectrum disorder (ASD) is associated with behavioral and
communication problems. Often, functional magnetic resonance imaging (fMRI) is
used to detect and characterize brain changes related to the disorder.
Recently, machine learning methods have been employed to reveal new patterns by
trying to classify ASD from spatio-temporal fMRI images. Typically, these
methods have either focused on temporal or spatial information processing.
Instead, we propose a 4D spatio-temporal deep learning approach for ASD
classification where we jointly learn from spatial and temporal data. We employ
4D convolutional neural networks and convolutional-recurrent models which
outperform a previous approach with an F1-score of 0.71 compared to an F1-score
of 0.65.
Related papers
- Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals [4.17085180769512]
Alzheimer's disease (AD) and Frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns.
This study aims to develop a deep learning-based classification system for dementia by analyzing scout time-series signals from deep brain regions.
arXiv Detail & Related papers (2024-08-20T13:11:43Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Spatio-Temporal Attention in Multi-Granular Brain Chronnectomes for
Detection of Autism Spectrum Disorder [5.908259551646475]
Graph-based learning techniques have demonstrated impressive results on resting-state functional magnetic resonance imaging (rs-fMRI) data.
IMAGIN achieves a 5-fold cross-validation accuracy of 79.25%, which surpasses the current state-of-the-art by 1.5%.
arXiv Detail & Related papers (2022-10-30T01:43:17Z) - fMRI-S4: learning short- and long-range dynamic fMRI dependencies using
1D Convolutions and State Space Models [0.0]
fMRI-S4 is a versatile deep learning model for the classification of phenotypes and psychiatric disorders from resting-state functional magnetic resonance imaging scans.
We show that fMRI-S4 can outperform existing methods on all three tasks and can be trained as a plug&play model without special hyperpararameter tuning for each setting.
arXiv Detail & Related papers (2022-08-08T14:07:25Z) - Understanding Cognitive Fatigue from fMRI Scans with Self-supervised
Learning [0.0]
This paper proposes dividing state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions.
We built a-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans.
This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.
arXiv Detail & Related papers (2021-06-28T22:38:51Z) - Spatio-Temporal Deep Learning Methods for Motion Estimation Using 4D OCT
Image Data [63.73263986460191]
Localizing structures and estimating the motion of a specific target region are common problems for navigation during surgical interventions.
We investigate whether using a temporal stream of OCT image volumes can improve deep learning-based motion estimation performance.
Using 4D information for the model input improves performance while maintaining reasonable inference times.
arXiv Detail & Related papers (2020-04-21T15:43:01Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
We investigate whether extending this problem to full 4D deep learning using a history of MRI volumes can improve performance.
We find that our proposed architecture outperforms previous approaches with a lesion-wise true positive rate of 0.84 at a lesion-wise false positive rate of 0.19.
arXiv Detail & Related papers (2020-04-20T11:41:01Z) - A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI
data: An ABIDE Autism Classification study [0.0]
We introduce an end-to-end algorithm capable of extracting features from full 4-D data using 3-D CNNs and 3-D Magnetical LSTMs.
Our results show that the proposed model achieves state of the art results on single sites with F1-scores of 0.78 and 0.7 on NYU and UM sites, respectively.
arXiv Detail & Related papers (2020-02-14T11:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.