Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting
- URL: http://arxiv.org/abs/2408.10822v2
- Date: Sun, 25 Aug 2024 13:29:28 GMT
- Title: Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting
- Authors: Jianxiang Zhou, Erdong Liu, Wei Chen, Siru Zhong, Yuxuan Liang,
- Abstract summary: Traffic forecasting has emerged as a crucial research area in the development of smart cities.
Recent advancements in network modeling for most-temporal correlations are starting to see diminishing returns in performance.
To tackle these challenges, we introduce the Spatio-Temporal Graph Transformer (STGormer)
We design two straightforward yet effective spatial encoding methods based on the structure and integrate time position into the vanilla transformer to capture-temporal traffic patterns.
- Score: 13.309018047313801
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic forecasting has emerged as a crucial research area in the development of smart cities. Although various neural networks with intricate architectures have been developed to address this problem, they still face two key challenges: i) Recent advancements in network designs for modeling spatio-temporal correlations are starting to see diminishing returns in performance enhancements. ii) Additionally, most models do not account for the spatio-temporal heterogeneity inherent in traffic data, i.e., traffic distribution varies significantly across different regions and traffic flow patterns fluctuate across various time slots. To tackle these challenges, we introduce the Spatio-Temporal Graph Transformer (STGormer), which effectively integrates attribute and structure information inherent in traffic data for learning spatio-temporal correlations, and a mixture-of-experts module for capturing heterogeneity along spaital and temporal axes. Specifically, we design two straightforward yet effective spatial encoding methods based on the graph structure and integrate time position encoding into the vanilla transformer to capture spatio-temporal traffic patterns. Additionally, a mixture-of-experts enhanced feedforward neural network (FNN) module adaptively assigns suitable expert layers to distinct patterns via a spatio-temporal gating network, further improving overall prediction accuracy. Experiments on real-world traffic datasets demonstrate that STGormer achieves state-of-the-art performance.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework [2.9490249935740573]
We propose a Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework (FMPESTF)
FMPESTF is composed of spatial and temporal modules for down-sampling traffic data.
We introduce attention mechanism in time modeling, and design hierarchical spatial-temporal interactive learning to help the model adapt to various traffic scenarios.
arXiv Detail & Related papers (2024-10-12T03:47:27Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
We propose a model that combines hybrid Transformer and self-supervised learning.
The model enhances its adaptive data augmentation by applying data augmentation techniques at the sequence-level of the traffic.
We design two self-supervised learning tasks to model the temporal and spatial dependencies, thereby improving the accuracy and ability of the model.
arXiv Detail & Related papers (2024-01-29T06:17:23Z) - Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting [35.0288931087826]
Traffic flow forecasting aims to predict future traffic conditions on the basis of networks and traffic conditions in the past.
The problem is typically solved by modeling complex-temporal correlations in traffic data using far-temporal neural networks (GNNs)
Existing methods follow the paradigm of message passing that aggregates neighborhood information linearly.
In this paper, we propose a model named Dynamic Hyper Structure Learning (DyHSL) for traffic flow prediction.
arXiv Detail & Related papers (2023-09-21T12:44:55Z) - STAEformer: Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer
SOTA for Traffic Forecasting [10.875804648633832]
We present a component called adaptive embedding that can yield results with outstanding gains.
Experiments demonstrate that adaptive embedding plays a crucial role in traffic forecasting by capturing intrinsic-temporal relations and information traffic time series.
arXiv Detail & Related papers (2023-08-21T02:27:13Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence.
Existing methods cannot accurately model both long-term and short-term temporal correlations simultaneously.
We propose a novel spatial-temporal neural network framework, which consists of a graph convolutional recurrent module (GCRN) and a global attention module.
arXiv Detail & Related papers (2023-02-25T03:37:00Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.