CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving
- URL: http://arxiv.org/abs/2408.10845v1
- Date: Mon, 19 Aug 2024 09:53:49 GMT
- Title: CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving
- Authors: Hidehisa Arai, Keita Miwa, Kento Sasaki, Yu Yamaguchi, Kohei Watanabe, Shunsuke Aoki, Issei Yamamoto,
- Abstract summary: CoVLA (Comprehensive Vision-Language-Action) dataset comprises real-world driving videos spanning more than 80 hours.
This dataset establishes a framework for robust, interpretable, and data-driven autonomous driving systems.
- Score: 1.727597257312416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving, particularly navigating complex and unanticipated scenarios, demands sophisticated reasoning and planning capabilities. While Multi-modal Large Language Models (MLLMs) offer a promising avenue for this, their use has been largely confined to understanding complex environmental contexts or generating high-level driving commands, with few studies extending their application to end-to-end path planning. A major research bottleneck is the lack of large-scale annotated datasets encompassing vision, language, and action. To address this issue, we propose CoVLA (Comprehensive Vision-Language-Action) Dataset, an extensive dataset comprising real-world driving videos spanning more than 80 hours. This dataset leverages a novel, scalable approach based on automated data processing and a caption generation pipeline to generate accurate driving trajectories paired with detailed natural language descriptions of driving environments and maneuvers. This approach utilizes raw in-vehicle sensor data, allowing it to surpass existing datasets in scale and annotation richness. Using CoVLA, we investigate the driving capabilities of MLLMs that can handle vision, language, and action in a variety of driving scenarios. Our results illustrate the strong proficiency of our model in generating coherent language and action outputs, emphasizing the potential of Vision-Language-Action (VLA) models in the field of autonomous driving. This dataset establishes a framework for robust, interpretable, and data-driven autonomous driving systems by providing a comprehensive platform for training and evaluating VLA models, contributing to safer and more reliable self-driving vehicles. The dataset is released for academic purpose.
Related papers
- DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model [65.43473733967038]
We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics.
Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge.
arXiv Detail & Related papers (2024-10-14T17:19:23Z) - DriveGenVLM: Real-world Video Generation for Vision Language Model based Autonomous Driving [12.004604110512421]
Vision language models (VLMs) are emerging as revolutionary tools with significant potential to influence autonomous driving.
We propose the DriveGenVLM framework to generate driving videos and use VLMs to understand them.
arXiv Detail & Related papers (2024-08-29T15:52:56Z) - SimpleLLM4AD: An End-to-End Vision-Language Model with Graph Visual Question Answering for Autonomous Driving [15.551625571158056]
We propose an e2eAD method called SimpleLLM4AD.
In our method, the e2eAD task are divided into four stages, which are perception, prediction, planning, and behavior.
Our experiments demonstrate that SimpleLLM4AD achieves competitive performance in complex driving scenarios.
arXiv Detail & Related papers (2024-07-31T02:35:33Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
Vision Language Models (VLMs) can process state information as visual-textual prompts and respond with policy decisions in text.
We propose LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as conversations.
arXiv Detail & Related papers (2024-06-28T17:59:12Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - Multi-Frame, Lightweight & Efficient Vision-Language Models for Question Answering in Autonomous Driving [0.0]
We develop an efficient, lightweight, multi-frame vision language model which performs Visual Question Answering for autonomous driving.
In comparison to previous approaches, EM-VLM4AD requires at least 10 times less memory and floating point operations.
arXiv Detail & Related papers (2024-03-28T21:18:33Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLM is a framework that can perform close-loop autonomous driving in realistic simulators.
We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system.
This model can plug-and-play in existing AD systems such as Apollo for close-loop driving.
arXiv Detail & Related papers (2023-12-14T18:59:05Z) - LMDrive: Closed-Loop End-to-End Driving with Large Language Models [37.910449013471656]
Large language models (LLM) have shown impressive reasoning capabilities that approach "Artificial General Intelligence"
This paper introduces LMDrive, a novel language-guided, end-to-end, closed-loop autonomous driving framework.
arXiv Detail & Related papers (2023-12-12T18:24:15Z) - Vision Language Models in Autonomous Driving: A Survey and Outlook [26.70381732289961]
Vision-Language Models (VLMs) have attracted widespread attention due to their outstanding performance and the ability to leverage Large Language Models (LLMs)
We present a comprehensive and systematic survey of the advances in vision language models in this domain, encompassing perception and understanding, navigation and planning, decision-making and control, end-to-end autonomous driving, and data generation.
arXiv Detail & Related papers (2023-10-22T21:06:10Z) - DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model [84.29836263441136]
This study introduces DriveGPT4, a novel interpretable end-to-end autonomous driving system based on multimodal large language models (MLLMs)
DriveGPT4 facilitates the interpretation of vehicle actions, offers pertinent reasoning, and effectively addresses a diverse range of questions posed by users.
arXiv Detail & Related papers (2023-10-02T17:59:52Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
We propose a neural motion planner (NMP) for learning to drive autonomously in complex urban scenarios.
We design a holistic model that takes as input raw LIDAR data and a HD map and produces interpretable intermediate representations.
We demonstrate the effectiveness of our approach in real-world driving data captured in several cities in North America.
arXiv Detail & Related papers (2021-01-17T14:16:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.