Radio U-Net: a convolutional neural network to detect diffuse radio sources in galaxy clusters and beyond
- URL: http://arxiv.org/abs/2408.10871v1
- Date: Tue, 20 Aug 2024 14:03:21 GMT
- Title: Radio U-Net: a convolutional neural network to detect diffuse radio sources in galaxy clusters and beyond
- Authors: Chiara Stuardi, Claudio Gheller, Franco Vazza, Andrea Botteon,
- Abstract summary: Radio interferometric images of diffuse sources present a challenge for image segmentation tasks.
We introduce Radio U-Net, a fully convolutional neural network based on the U-Net architecture.
Radio U-Net is designed to detect faint and extended sources in radio surveys.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The forthcoming generation of radio telescope arrays promises significant advancements in sensitivity and resolution, enabling the identification and characterization of many new faint and diffuse radio sources. Conventional manual cataloging methodologies are anticipated to be insufficient to exploit the capabilities of new radio surveys. Radio interferometric images of diffuse sources present a challenge for image segmentation tasks due to noise, artifacts, and embedded radio sources. In response to these challenges, we introduce Radio U-Net, a fully convolutional neural network based on the U-Net architecture. Radio U-Net is designed to detect faint and extended sources in radio surveys, such as radio halos, relics, and cosmic web filaments. Radio U-Net was trained on synthetic radio observations built upon cosmological simulations and then tested on a sample of galaxy clusters, where the detection of cluster diffuse radio sources relied on customized data reduction and visual inspection of LOFAR Two Metre Sky Survey (LoTSS) data. The 83% of clusters exhibiting diffuse radio emission were accurately identified, and the segmentation successfully recovered the morphology of the sources even in low-quality images. In a test sample comprising 246 galaxy clusters, we achieved a 73% accuracy rate in distinguishing between clusters with and without diffuse radio emission. Our results establish the applicability of Radio U-Net to extensive radio survey datasets, probing its efficiency on cutting-edge high-performance computing systems. This approach represents an advancement in optimizing the exploitation of forthcoming large radio surveys for scientific exploration.
Related papers
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Supervised Radio Frequency Interference Detection with SNNs [25.08630315149258]
Radio Frequency Interference (RFI) poses a significant challenge in radio astronomy, arising from terrestrial and celestial sources, disrupting observations conducted by radio telescopes.
Given the dynamic and temporal nature of radio astronomy observations, Spiking Neural Networks (SNNs) emerge as a promising approach.
We study the encoding of radio astronomy visibility data for SNN inference, considering six encoding schemes: rate, latency, delta-modulation, and three variations of the step-forward algorithm.
arXiv Detail & Related papers (2024-06-10T07:49:51Z) - Classification of compact radio sources in the Galactic plane with
supervised machine learning [0.0]
We focus on the classification of compact radio sources in the Galactic plane using both radio and infrared images as inputs.
To this aim, we produced a curated dataset of 20,000 images of compact sources of different astronomical classes.
The implemented tools and trained models were publicly released, and made available to the radioastronomical community for future application.
arXiv Detail & Related papers (2024-02-23T09:47:42Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
In the 6G era, real-time radio resource monitoring and management are urged to support diverse wireless-empowered applications.
In this paper, we present a cooperative radio map estimation approach enabled by the generative adversarial network (GAN)
arXiv Detail & Related papers (2024-02-05T05:01:28Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
We release a dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources.
Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented.
arXiv Detail & Related papers (2024-01-12T14:56:45Z) - Advances on the classification of radio image cubes [4.443085464476228]
Modern radio telescopes will daily generate data sets on the scale of exabytes for systems like the Square Kilometre Array (SKA)
Massive data sets are a source of unknown and rare astrophysical phenomena that lead to discoveries.
Recently, there has been a surge in scientific publications focusing on the use of artificial intelligence in radio astronomy.
arXiv Detail & Related papers (2023-05-05T11:15:37Z) - Look, Radiate, and Learn: Self-Supervised Localisation via Radio-Visual
Correspondence [1.6219158909792257]
Next generation cellular networks will implement radio sensing functions alongside customary communications.
We present MaxRay: a synthetic radio-visual dataset and benchmark that facilitate precise target localisation in radio.
We use such self-supervised coordinates to train a radio localiser network.
arXiv Detail & Related papers (2022-06-13T19:08:36Z) - Radio-Assisted Human Detection [61.738482870059805]
We propose a radio-assisted human detection framework by incorporating radio information into the state-of-the-art detection methods.
We extract the radio localization and identifer information from the radio signals to assist the human detection.
Experiments on the simulative Microsoft COCO dataset and Caltech pedestrian datasets show that the mean average precision (mAP) and the miss rate can be improved with the aid of radio information.
arXiv Detail & Related papers (2021-12-16T09:53:41Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - A Big Data Enabled Channel Model for 5G Wireless Communication Systems [71.93009775340234]
This paper investigates various applications of big data analytics, especially machine learning algorithms in wireless communications and channel modeling.
We propose a big data and machine learning enabled wireless channel model framework.
The proposed channel model is based on artificial neural networks (ANNs), including feed-forward neural network (FNN) and radial basis function neural network (RBF-NN)
arXiv Detail & Related papers (2020-02-28T05:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.