RadioLLM: Introducing Large Language Model into Cognitive Radio via Hybrid Prompt and Token Reprogrammings
- URL: http://arxiv.org/abs/2501.17888v3
- Date: Tue, 13 May 2025 01:17:48 GMT
- Title: RadioLLM: Introducing Large Language Model into Cognitive Radio via Hybrid Prompt and Token Reprogrammings
- Authors: Shuai Chen, Yong Zu, Zhixi Feng, Shuyuan Yang, Mengchang Li,
- Abstract summary: Large Language Models (LLMs) offer new potential for advancing Cognitive Radio Technology (CRT)<n>We propose RadioLLM, a novel framework that integrates Hybrid Prompt and Token Reprogramming (HPTR) for combining radio signal features with expert knowledge, and a Frequency-Attuned Fusion (FAF) module for enhanced high-frequency feature modeling.
- Score: 15.98684925275276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing scarcity of spectrum resources and rapid proliferation of wireless devices make efficient radio network management critical. While deep learning-enhanced Cognitive Radio Technology (CRT) provides promising solutions for tasks such as radio signal classification (RSC), denoising, and spectrum allocation, existing DL-based CRT frameworks are typically task-specific and lack scalability in diverse real-world applications. This limitation naturally leads to the exploration of Large Language Models (LLMs), whose exceptional cross-domain generalization capabilities offer new potential for advancing CRT. To bridge this gap, we propose RadioLLM, a novel framework that integrates Hybrid Prompt and Token Reprogramming (HPTR) for combining radio signal features with expert knowledge, and a Frequency-Attuned Fusion (FAF) module for enhanced high-frequency feature modeling. Extensive evaluations on multiple benchmark datasets demonstrate that RadioLLM achieves superior performance compared to existing baselines in the majority of testing scenarios.
Related papers
- SpectrumFM: A Foundation Model for Intelligent Spectrum Management [99.08036558911242]
Existing intelligent spectrum management methods, typically based on small-scale models, suffer from notable limitations in recognition accuracy, convergence speed, and generalization.<n>This paper proposes a novel spectrum foundation model, termed SpectrumFM, establishing a new paradigm for spectrum management.<n>Experiments demonstrate that SpectrumFM achieves superior performance in terms of accuracy, robustness, adaptability, few-shot learning efficiency, and convergence speed.
arXiv Detail & Related papers (2025-05-02T04:06:39Z) - LLM-Guided Open RAN: Empowering Hierarchical RAN Intelligent Control [56.94324843095396]
We propose the empowered hierarchical RIC (LLM-hRIC) framework to improve the collaboration between RICs.
This framework integrates LLMs with reinforcement learning (RL) for efficient network resource management.
We evaluate the LLM-hRIC framework in an integrated access and backhaul (IAB) network setting.
arXiv Detail & Related papers (2025-04-25T04:18:23Z) - Augmenting Training Data with Vector-Quantized Variational Autoencoder for Classifying RF Signals [9.99212997328053]
This paper proposes the use of a Vector-Quantized Variational Autoencoder (VQ-VAE) to augment training data.
The VQ-VAE model generates high-fidelity synthetic RF signals, increasing the diversity and fidelity of the training dataset.
Our experimental results show that incorporating VQ-VAE-generated data significantly improves the classification accuracy of the baseline model.
arXiv Detail & Related papers (2024-10-23T21:17:45Z) - Rydberg Atomic Quantum Receivers for Classical Wireless Communication and Sensing [71.94873601156017]
Rydberg atomic quantum receivers (RAQR) are emerging quantum precision sensing platforms designed for receiving radio frequency (RF) signals.<n>RAQRs realize RF-to-optical conversions based on light-atom interactions.<n>Initial experimental studies have demonstrated their capabilities in classical wireless communications and sensing.
arXiv Detail & Related papers (2024-09-22T15:55:02Z) - Accelerated Multi-Contrast MRI Reconstruction via Frequency and Spatial Mutual Learning [50.74383395813782]
We propose a novel Frequency and Spatial Mutual Learning Network (FSMNet) to explore global dependencies across different modalities.
The proposed FSMNet achieves state-of-the-art performance for the Multi-Contrast MR Reconstruction task with different acceleration factors.
arXiv Detail & Related papers (2024-09-21T12:02:47Z) - RadioGAT: A Joint Model-based and Data-driven Framework for Multi-band Radiomap Reconstruction via Graph Attention Networks [36.8227064106456]
Multi-band radiomap reconstruction (MB-RMR) is a key component in wireless communications for tasks such as spectrum management and network planning.
Traditional machine-learning-based MB-RMR methods, which rely heavily on simulated data, face significant deployment challenges.
This study presents RadioGAT, a novel framework based on Graph Attention Network (GAT) tailored for MB-RMR within a single area.
arXiv Detail & Related papers (2024-03-25T03:23:10Z) - Deep-Learned Compression for Radio-Frequency Signal Classification [0.49109372384514843]
Next-generation cellular concepts rely on the processing of large quantities of radio-frequency (RF) samples.
We propose a deep learned compression model, HQARF, to compress the complex-valued samples of RF signals.
We are assessing the effects of HQARF on the performance of an AI model trained to infer the modulation class of the RF signal.
arXiv Detail & Related papers (2024-03-05T17:42:39Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
This paper presents an approach for tackling radar signal classification and characterisation as a multi-task learning (MTL) problem.
We propose the IQ Signal Transformer (IQST) among several reference architectures that allow for simultaneous optimisation of multiple regression and classification tasks.
We demonstrate the performance of our proposed MTL model on a synthetic radar dataset, while also providing a first-of-its-kind benchmark for radar signal characterisation.
arXiv Detail & Related papers (2023-06-19T12:01:28Z) - Enabling the Wireless Metaverse via Semantic Multiverse Communication [82.47169682083806]
Metaverse over wireless networks is an emerging use case of the sixth generation (6G) wireless systems.
We propose a novel semantic communication framework by decomposing the metaverse into human/machine agent-specific semantic multiverses (SMs)
An SM stored at each agent comprises a semantic encoder and a generator, leveraging recent advances in generative artificial intelligence (AI)
arXiv Detail & Related papers (2022-12-13T21:21:07Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Multi-hop RIS-Empowered Terahertz Communications: A DRL-based Hybrid
Beamforming Design [39.21220050099642]
Wireless communication in the TeraHertz band (0.1--10 THz) is envisioned as one of the key enabling technologies for the future sixth generation (6G) wireless communication systems.
We propose a novel hybrid beamforming scheme for the multi-hop RIS-assisted communication networks to improve the coverage range at THz-band frequencies.
arXiv Detail & Related papers (2021-01-22T14:56:28Z) - Real-Time Radio Technology and Modulation Classification via an LSTM
Auto-Encoder [29.590446724625693]
We present a learning framework based on an LSTM denoising auto-encoder designed to automatically extract stable and robust features from noisy radio signals.
Results on realistic synthetic as well as over-the-air radio data demonstrate that the proposed framework reliably and efficiently classifies received radio signals.
arXiv Detail & Related papers (2020-11-16T21:41:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.