Probability-based approach to hybrid classical-quantum systems of any size: Generalized Gleason and Kraus theorems
- URL: http://arxiv.org/abs/2408.10882v2
- Date: Fri, 27 Dec 2024 14:58:12 GMT
- Title: Probability-based approach to hybrid classical-quantum systems of any size: Generalized Gleason and Kraus theorems
- Authors: S. Camalet,
- Abstract summary: A fully quantum effective description of hybrid classical-quantum systems is straightforward to formulate when the classical subsystem is discrete.
We propose a probability-based approach starting with four axioms for hybrid classical-quantum probability measures.
Explicit expressions for these transformations are derived when the classical and quantum subsystems are non-interacting.
- Score: 0.0
- License:
- Abstract: Hybrid classical-quantum systems are of interest in numerous fields, from quantum chemistry to quantum information science. A fully quantum effective description of them is straightforward to formulate when the classical subsystem is discrete. But it is not obvious how to describe them in the general case. We propose a probability-based approach starting with four axioms for hybrid classical-quantum probability measures that readily generalize the usual ones for classical and quantum probability measures. They apply to discrete and non-discrete classical subsystems and to finite and infinite dimensional quantum subsystems. A generalized Gleason theorem that gives the mathematical form of the corresponding hybrid states is shown. This form simplifies when the classical subsystem probabilities are described by a probability density function with respect to a natural reference measure, for example the familiar Lebesgue measure. We formulate a requirement for the transformations, that is, the finite-time evolutions, of hybrid probability measures analogous to the complete positive assumption for quantum operations. For hybrid systems with reference measure, we prove a generalized Kraus theorem that fully determines the considered transformations provided they are continuous with respect to an appropriate metric. Explicit expressions for these transformations are derived when the classical and quantum subsystems are non-interacting, the classical subsystem is discrete, or the Hilbert space of the quantum subsystem is finite-dimensional. We also discuss the quantification of the correlations between the classical and quantum subsystems and a generalization of the quantum operations usually considered in the study of quantum entanglement.
Related papers
- Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.
We show that no such simulation exists, thereby certifying quantum coherence.
Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Ergodic and chaotic properties in Tavis-Cummings dimer: quantum and classical limit [0.0]
We investigate two key aspects of quantum systems by using the Tavis-Cummings dimer system as a platform.
The first aspect involves unraveling the relationship between the phenomenon of self-trapping (or lack thereof) and integrability (or quantum chaos)
Secondly, we uncover the possibility of mixed behavior in this quantum system using diagnostics based on random matrix theory.
arXiv Detail & Related papers (2024-04-21T13:05:29Z) - Three statistical descriptions of classical systems and their extensions to hybrid quantum-classical systems [0.13108652488669734]
We present three statistical descriptions for systems of classical particles and consider their extension to hybrid quantum-classical systems.
The approach of ensembles on phase space and the Hilbert space approach, which are novel, lead to equivalent hybrid models.
arXiv Detail & Related papers (2024-03-12T15:15:41Z) - Hybrid classical-quantum systems in terms of moments [0.0]
We describe the dynamics of hybrid systems with mixed classical and quantum degrees of freedom.
In particular, a closed formula for the Poisson brackets between any two moments for an arbitrary number of degrees of freedom is presented.
arXiv Detail & Related papers (2023-12-21T15:36:40Z) - Markovian master equations for quantum-classical hybrid systems [0.0]
In the Markovian case, the problem is formalized by the notion of hybrid dynamical semigroup.
A classical component can be observed without perturbing the system.
Information on the quantum component can be extracted, thanks to the quantum-classical interaction.
arXiv Detail & Related papers (2023-10-03T12:24:06Z) - Canonical typicality under general quantum channels [39.58317527488534]
In the present work we employ quantum channels to define generalized subsystems.
We show that generalized subsystems also display the phenomena of canonical typicality.
In particular we demonstrate that the property regulating the emergence of the canonical typicality behavior is the entropy of the channel used to define the generalized subsystem.
arXiv Detail & Related papers (2023-08-30T21:29:45Z) - Hybrid quantum-classical systems: Quasi-free Markovian dynamics [0.0]
In the case of a quantum-classical hybrid system, the problem of characterizing the most general dynamical semigroup is solved under the restriction of being quasi-free.
We show how to extract multi-time probabilities and how to connect them to the quantum notions of positive operator valued measure and instrument.
A concrete example is given, showing how a classical component can input noise into a quantum one and how the classical system can extract information on the behaviour of the quantum one.
arXiv Detail & Related papers (2023-07-05T19:26:09Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.