ViLReF: An Expert Knowledge Enabled Vision-Language Retinal Foundation Model
- URL: http://arxiv.org/abs/2408.10894v3
- Date: Wed, 16 Oct 2024 06:00:24 GMT
- Title: ViLReF: An Expert Knowledge Enabled Vision-Language Retinal Foundation Model
- Authors: Shengzhu Yang, Jiawei Du, Jia Guo, Weihang Zhang, Hanruo Liu, Huiqi Li, Ningli Wang,
- Abstract summary: This work aims to develop a retinal foundation model, called ViLReF, by pre-training on a paired dataset comprising 451,956 retinal images and corresponding diagnostic text reports.
In our vision-language pre-training strategy, we leverage expert knowledge to facilitate the extraction of labels.
We employ a batch expansion module with dynamic memory queues, maintained by momentum encoders, to supply extra samples and compensate for the vacancies caused by eliminating false negatives.
- Score: 19.915033191502328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Subtle semantic differences in retinal image and text data present great challenges for pre-training visual-language models. Moreover, false negative samples, i.e., image-text pairs having the same semantics but incorrectly regarded as negatives, disrupt the visual-language pre-training process and affect the model's learning ability. This work aims to develop a retinal foundation model, called ViLReF, by pre-training on a paired dataset comprising 451,956 retinal images and corresponding diagnostic text reports. In our vision-language pre-training strategy, we leverage expert knowledge to facilitate the extraction of labels and propose a novel constraint, the Weighted Similarity Coupling Loss, to adjust the speed of pushing sample pairs further apart dynamically within the feature space. Furthermore, we employ a batch expansion module with dynamic memory queues, maintained by momentum encoders, to supply extra samples and compensate for the vacancies caused by eliminating false negatives. Extensive experiments are conducted on multiple datasets for downstream classification and segmentation tasks. The experimental results demonstrate the powerful zero-shot and transfer learning capabilities of ViLReF, verifying the effectiveness of our pre-training strategy. Our ViLReF model is available at: https://github.com/T6Yang/ViLReF.
Related papers
- VL4AD: Vision-Language Models Improve Pixel-wise Anomaly Detection [5.66050466694651]
We propose Vision-Language (VL) encoders into existing anomaly detectors to leverage the semantically broad VL pre-training for improved outlier awareness.
We also propose a new scoring function that enables data- and training-free outlier supervision via textual prompts.
The resulting VL4AD model achieves competitive performance on widely used benchmark datasets.
arXiv Detail & Related papers (2024-09-25T20:12:10Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [99.9389737339175]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Make Prompts Adaptable: Bayesian Modeling for Vision-Language Prompt
Learning with Data-Dependent Prior [14.232144691524528]
Recent Vision-Language Pretrained models have become the backbone for many downstream tasks.
MLE training can lead the context vector to over-fit dominant image features in the training data.
This paper presents a Bayesian-based framework of prompt learning, which could alleviate the overfitting issues on few-shot learning application.
arXiv Detail & Related papers (2024-01-09T10:15:59Z) - ALIP: Adaptive Language-Image Pre-training with Synthetic Caption [78.93535202851278]
Contrastive Language-Image Pre-training (CLIP) has significantly boosted the performance of various vision-language tasks.
The presence of intrinsic noise and unmatched image-text pairs in web data can potentially affect the performance of representation learning.
We propose an Adaptive Language-Image Pre-training (ALIP), a bi-path model that integrates supervision from both raw text and synthetic caption.
arXiv Detail & Related papers (2023-08-16T15:19:52Z) - Unleashing Text-to-Image Diffusion Models for Visual Perception [84.41514649568094]
VPD (Visual Perception with a pre-trained diffusion model) is a new framework that exploits the semantic information of a pre-trained text-to-image diffusion model in visual perception tasks.
We show that VPD can be faster adapted to downstream visual perception tasks using the proposed VPD.
arXiv Detail & Related papers (2023-03-03T18:59:47Z) - Generative Negative Text Replay for Continual Vision-Language
Pretraining [95.2784858069843]
Vision-language pre-training has attracted increasing attention recently.
Massive data are usually collected in a streaming fashion.
We propose a multi-modal knowledge distillation between images and texts to align the instance-wise prediction between old and new models.
arXiv Detail & Related papers (2022-10-31T13:42:21Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.