論文の概要: LBC: Language-Based-Classifier for Out-Of-Variable Generalization
- arxiv url: http://arxiv.org/abs/2408.10923v1
- Date: Tue, 20 Aug 2024 15:05:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 13:05:41.894981
- Title: LBC: Language-Based-Classifier for Out-Of-Variable Generalization
- Title(参考訳): LBC:アウトオフ変数一般化のための言語ベース分類器
- Authors: Kangjun Noh, Baekryun Seong, Hoyoon Byun, Sungjin Song, Kyungwoo Song,
- Abstract要約: 大規模言語モデル(LLM)は、応答生成のような自然言語処理タスクにおいて大きな成功を収めている。
LLMの事前学習された知識により、追加のトレーニングなしでテストに現れる新しい変数を解釈できることがわかった。
本稿では,LBC(Language-Based-Classifier)を提案する。
- 参考スコア(独自算出の注目度): 14.870609730721432
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large Language Models (LLMs) have great success in natural language processing tasks such as response generation. However, their use in tabular data has been limited due to their inferior performance compared to traditional machine learning models (TMLs) such as XGBoost. We find that the pre-trained knowledge of LLMs enables them to interpret new variables that appear in a test without additional training, a capability central to the concept of Out-of-Variable (OOV). From the findings, we propose a Language-Based-Classifier (LBC), a classifier that maximizes the benefits of LLMs to outperform TMLs on OOV tasks. LBC employs three key methodological strategies: 1) Categorical changes to adjust data to better fit the model's understanding, 2) Advanced order and indicator to enhance data representation to the model, and 3) Using verbalizer to map logit scores to classes during inference to generate model predictions. These strategies, combined with the pre-trained knowledge of LBC, emphasize the model's ability to effectively handle OOV tasks. We empirically and theoretically validate the superiority of LBC. LBC is the first study to apply an LLM-based model to OOV tasks. The source code is at https://github.com/ASDASDanonymous/Language-Based-Classifier-forOOVtasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、応答生成のような自然言語処理タスクにおいて大きな成功を収めている。
しかし、XGBoostのような従来の機械学習モデル(TML)と比べてパフォーマンスが劣っているため、表形式のデータでの使用は制限されている。
LLMの事前学習された知識は、追加のトレーニングなしにテストに現れる新しい変数を解釈することを可能にする。
そこで本研究では,LBC(Language-Based-Classifier)を提案する。
LBCは3つの主要な方法論戦略を採用している。
1) モデルの理解に合うようにデータを調整するためのカテゴリの変更。
2)データ表現をモデルに拡張する高度な順序と指標
3)ロジットスコアを推論中にクラスにマッピングし,モデル予測を生成する。
これらの戦略は、LBCの事前訓練された知識と組み合わせて、OOVタスクを効果的に処理するモデルの能力を強調している。
我々は,LBCの優位性を実証的,理論的に検証した。
LBC は OOV タスクに LLM ベースのモデルを適用する最初の研究である。
ソースコードはhttps://github.com/ASDASDanonymous/Language-Based-Classifier-forOOVtasksにある。
関連論文リスト
- Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
言語化機械学習(VML)の枠組みを紹介する。
VMLはパラメータ空間を人間の解釈可能な自然言語に制限する。
我々は,VMLの有効性を実証的に検証し,VMLがより強力な解釈可能性を実現するためのステップストーンとして機能することを期待する。
論文 参考訳(メタデータ) (2024-06-06T17:59:56Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
大規模言語モデル(LLM)は、NLPタスクにおいて顕著な成功を収めた。
我々は、サポートベクトルマシン(SVM)に基づく教師付き古典機械学習モデルと、RoBERTa、BERTweet、SocBERTに基づく3つの教師付き事前訓練言語モデル(PLM)と、6つのテキスト分類タスクで2つのLLMベースの分類器(GPT3.5、GPT4)をベンチマークした。
LLM(GPT-4)を用いた軽量教師付き分類モデルの訓練には,比較的小さな人手によるデータ拡張(GPT-4)が有効であることを示す総合的な実験を行った。
論文 参考訳(メタデータ) (2024-03-27T22:05:10Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
我々はエンコーダとデコーダベースのモデルを単一のプレフィックスLMに統一する。
学習方法は,「フリーランチ」仮説の主張を考察する。
データ配信においては,混合分布と多言語学習がモデル性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2023-05-03T17:55:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。