論文の概要: Approximation Rates for Shallow ReLU$^k$ Neural Networks on Sobolev Spaces via the Radon Transform
- arxiv url: http://arxiv.org/abs/2408.10996v1
- Date: Tue, 20 Aug 2024 16:43:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 12:55:01.398384
- Title: Approximation Rates for Shallow ReLU$^k$ Neural Networks on Sobolev Spaces via the Radon Transform
- Title(参考訳): ラドン変換によるソボレフ空間上のShallow ReLU$^k$ニューラルネットワークの近似速度
- Authors: Tong Mao, Jonathan W. Siegel, Jinchao Xu,
- Abstract要約: 我々は,ReLU$k$アクティベーション関数がソボレフ空間からの関数をいかに効率的に近似できるかという問題を考察する。
例えば、$qleq p$, $pgeq 2$, $s leq k + (d+1)/2$ などである。
- 参考スコア(独自算出の注目度): 4.096453902709292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Let $\Omega\subset \mathbb{R}^d$ be a bounded domain. We consider the problem of how efficiently shallow neural networks with the ReLU$^k$ activation function can approximate functions from Sobolev spaces $W^s(L_p(\Omega))$ with error measured in the $L_q(\Omega)$-norm. Utilizing the Radon transform and recent results from discrepancy theory, we provide a simple proof of nearly optimal approximation rates in a variety of cases, including when $q\leq p$, $p\geq 2$, and $s \leq k + (d+1)/2$. The rates we derive are optimal up to logarithmic factors, and significantly generalize existing results. An interesting consequence is that the adaptivity of shallow ReLU$^k$ neural networks enables them to obtain optimal approximation rates for smoothness up to order $s = k + (d+1)/2$, even though they represent piecewise polynomials of fixed degree $k$.
- Abstract(参考訳): Omega\subset \mathbb{R}^d$ を有界領域とする。
我々は,ReLU$^k$アクティベーション関数がソボレフ空間$W^s(L_p(\Omega))$の関数を,$L_q(\Omega)$-normの誤差で近似できるという問題を考察する。
ラドン変換と最近の離散性理論の結果を利用して、$q\leq p$, $p\geq 2$, $s \leq k + (d+1)/2$ など、様々なケースで近似率がほぼ最適であるという簡単な証明を提供する。
我々が導出した速度は対数的因子に最適であり、既存の結果を著しく一般化する。
興味深い結果として、浅いReLU$^k$ニューラルネットワークの適応性は、固定次数$k$のピースワイズ多項式を表現したとしても、次数$s = k + (d+1)/2$までの滑らかさに対する最適近似率を得ることを可能にする。
関連論文リスト
- On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks [2.4112990554464235]
我々は、$mathcalO((WL)-2s/d)$が実際にソボレフ埋め込み条件の下で成り立つことを示す。
我々の証明の鍵となるツールは、幅と深さの異なる深部ReLUニューラルネットワークを用いてスパースベクトルを符号化することである。
論文 参考訳(メタデータ) (2024-09-02T02:26:01Z) - Nearly Optimal Regret for Decentralized Online Convex Optimization [53.433398074919]
分散オンライン凸最適化(D-OCO)は,局所計算と通信のみを用いて,グローバルな損失関数の列を最小化することを目的としている。
我々は凸関数と強い凸関数の残差をそれぞれ低減できる新しいD-OCOアルゴリズムを開発した。
我々のアルゴリズムは、$T$、$n$、$rho$の点でほぼ最適です。
論文 参考訳(メタデータ) (2024-02-14T13:44:16Z) - Generalization and Stability of Interpolating Neural Networks with
Minimal Width [37.908159361149835]
補間系における勾配によって訓練された浅層ニューラルネットワークの一般化と最適化について検討する。
トレーニング損失数は$m=Omega(log4 (n))$ニューロンとニューロンを最小化する。
m=Omega(log4 (n))$のニューロンと$Tapprox n$で、テスト損失のトレーニングを$tildeO (1/)$に制限します。
論文 参考訳(メタデータ) (2023-02-18T05:06:15Z) - Optimal Approximation Rates for Deep ReLU Neural Networks on Sobolev and Besov Spaces [2.7195102129095003]
ReLU活性化関数を持つディープニューラルネットワークは、ソボレフ空間$Ws(L_q(Omega))$とBesov空間$Bs_r(L_q(Omega))$の関数を近似することができる。
この問題は、様々な分野におけるニューラルネットワークの適用を研究する際に重要である。
論文 参考訳(メタデータ) (2022-11-25T23:32:26Z) - Shallow neural network representation of polynomials [91.3755431537592]
d+1+sum_r=2Rbinomr+d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1]binomr+d-1d-1d-1[binomr+d-1d-1d-1]binomr+d-1d-1d-1]
論文 参考訳(メタデータ) (2022-08-17T08:14:52Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
既知の滑らかな関数 $f$ の値を未知の点 $boldsymbolmu in mathbbRn$ で推定する問題について検討する。
我々は、各座標の重要性に応じてサンプルを学習するインスタンス適応アルゴリズムを設計し、少なくとも1-delta$の確率で$epsilon$の正確な推定値である$f(boldsymbolmu)$を返す。
論文 参考訳(メタデータ) (2022-03-18T18:50:52Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
我々は、任意の分布上でニューラルネットワークパラメータを補間する頑健性の低い$Omega(sqrtn/p)$を証明した。
次に、$n=mathrmpoly(d)$のとき、スムーズなデータに対する過度なパラメータ化の利点を示す。
我々は、$n=exp(omega(d))$ のとき、$O(1)$-Lipschitz の頑健な補間関数の存在を否定する。
論文 参考訳(メタデータ) (2022-02-23T16:10:23Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Optimal Approximation Rates and Metric Entropy of ReLU$^k$ and Cosine
Networks [0.0]
対応する浅層ニューラルネットワークによって効率的に近似できる関数の最大のバナッハ空間は、集合 $pmsigma(omegacdot x + b)$ の閉凸包のゲージによってノルムが与えられる空間であることを示す。
これらのゲージ空間の単位球の$L2$-metricエントロピーの精度を確立し、その結果、浅いReLU$k$ネットワークに対する最適近似速度を導出する。
論文 参考訳(メタデータ) (2021-01-29T02:29:48Z) - A Corrective View of Neural Networks: Representation, Memorization and
Learning [26.87238691716307]
我々はニューラルネットワーク近似の補正機構を開発する。
ランダム・フィーチャー・レギュレーション(RF)における2層ニューラルネットワークは任意のラベルを記憶できることを示す。
また、3層ニューラルネットワークについても検討し、その補正機構がスムーズなラジアル関数に対する高速な表現率をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-01T20:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。