An Overlooked Role of Context-Sensitive Dendrites
- URL: http://arxiv.org/abs/2408.11019v1
- Date: Tue, 20 Aug 2024 17:18:54 GMT
- Title: An Overlooked Role of Context-Sensitive Dendrites
- Authors: Mohsin Raza, Ahsan Adeel,
- Abstract summary: We show that context-sensitive (CS)-TPNs flexibly integrate C moment-by-moment with the FF somatic current at the soma.
This enables the propagation of more coherent signals (bursts), making learning faster with fewer neurons.
- Score: 2.225268436173329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To date, most dendritic studies have predominantly focused on the apical zone of pyramidal two-point neurons (TPNs) receiving only feedback (FB) connections from higher perceptual layers and using them for learning. Recent cellular neurophysiology and computational neuroscience studies suggests that the apical input (context), coming from feedback and lateral connections, is multifaceted and far more diverse, with greater implications for ongoing learning and processing in the brain than previously realized. In addition to the FB, the apical tuft receives signals from neighboring cells of the same network as proximal (P) context, other parts of the brain as distal (D) context, and overall coherent information across the network as universal (U) context. The integrated context (C) amplifies and suppresses the transmission of coherent and conflicting feedforward (FF) signals, respectively. Specifically, we show that complex context-sensitive (CS)-TPNs flexibly integrate C moment-by-moment with the FF somatic current at the soma such that the somatic current is amplified when both feedforward (FF) and C are coherent; otherwise, it is attenuated. This generates the event only when the FF and C currents are coherent, which is then translated into a singlet or a burst based on the FB information. Spiking simulation results show that this flexible integration of somatic and contextual currents enables the propagation of more coherent signals (bursts), making learning faster with fewer neurons. Similar behavior is observed when this functioning is used in conventional artificial networks, where orders of magnitude fewer neurons are required to process vast amounts of heterogeneous real-world audio-visual (AV) data trained using backpropagation (BP). The computational findings presented here demonstrate the universality of CS-TPNs, suggesting a dendritic narrative that was previously overlooked.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - A frugal Spiking Neural Network for unsupervised classification of continuous multivariate temporal data [0.0]
Spiking Neural Networks (SNNs) are neuromorphic and use more biologically plausible neurons with evolving membrane potentials.
We introduce here a frugal single-layer SNN designed for fully unsupervised identification and classification of multivariate temporal patterns in continuous data.
arXiv Detail & Related papers (2024-08-08T08:15:51Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Learning in Convolutional Neural Networks Accelerated by Transfer Entropy [0.0]
In a feedforward network, the Transfer Entropy (TE) can be used to quantify the relationships between neuron output pairs located in different layers.
We introduce a novel training mechanism for CNN architectures which integrates the TE feedback connections.
arXiv Detail & Related papers (2024-04-03T13:31:49Z) - Biologically-Plausible Topology Improved Spiking Actor Network for Efficient Deep Reinforcement Learning [15.143466733327566]
Recent advances in neuroscience have unveiled that the human brain achieves efficient reward-based learning.
The success of Deep Reinforcement Learning (DRL) is largely attributed to utilizing Artificial Neural Networks (ANNs) as function approximators.
We propose a novel alternative for function approximator, the Biologically-Plausible Topology improved Spiking Actor Network (BPT-SAN)
arXiv Detail & Related papers (2024-03-29T13:25:19Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
Cross-frequency coupling (CFC) is associated with information integration across populations of neurons.
We construct a model of CFC which predicts a computational role for observed $theta - gamma$ oscillatory circuits in the hippocampus and cortex.
We show that the presence of CFC increases the memory capacity of a population of neurons connected by plastic synapses.
arXiv Detail & Related papers (2022-04-05T17:13:36Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Learning shared neural manifolds from multi-subject FMRI data [13.093635609349874]
We propose a neural network called MRMD-AEmani that learns a common embedding from multiple subjects in an experiment.
We show that our learned common space represents antemporal manifold (where new points not seen during training can be mapped), improves the classification of stimulus features of unseen timepoints.
We believe this framework can be used for many downstream applications such as guided brain-computer interface (BCI) training in the future.
arXiv Detail & Related papers (2021-12-22T23:08:39Z) - Adaptive Rational Activations to Boost Deep Reinforcement Learning [68.10769262901003]
We motivate why rationals are suitable for adaptable activation functions and why their inclusion into neural networks is crucial.
We demonstrate that equipping popular algorithms with (recurrent-)rational activations leads to consistent improvements on Atari games.
arXiv Detail & Related papers (2021-02-18T14:53:12Z) - The distribution of inhibitory neurons in the C. elegans connectome
facilitates self-optimization of coordinated neural activity [78.15296214629433]
The nervous system of the nematode Caenorhabditis elegans exhibits remarkable complexity despite the worm's small size.
A general challenge is to better understand the relationship between neural organization and neural activity at the system level.
We implemented an abstract simulation model of the C. elegans connectome that approximates the neurotransmitter identity of each neuron.
arXiv Detail & Related papers (2020-10-28T23:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.