Enhanced Shadow Tomography of Molecular Excited States from Enforcing $N$-representability Conditions by Semidefinite Programming
- URL: http://arxiv.org/abs/2408.11025v1
- Date: Tue, 20 Aug 2024 17:27:48 GMT
- Title: Enhanced Shadow Tomography of Molecular Excited States from Enforcing $N$-representability Conditions by Semidefinite Programming
- Authors: Irma Avdic, David A. Mazziotti,
- Abstract summary: We present an algorithm that combines classical shadow tomography with physical constraints on the two-electron reduced density matrix (2-RDM) to treat excited states.
The method reduces the number of measurements of the many-electron 2-RDM on quantum computers by (i) approximating the quantum state through a random sampling technique called shadow tomography.
We compute excited-state energies and 2-RDMs of the H$_4$ chain and analyze the critical points along the photoexcited reaction pathway from gauche-1,3-butadiene to bicyclobutane via a conical intersection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Excited-state properties of highly correlated systems are key to understanding photosynthesis, luminescence, and the development of novel optical materials, but accurately capturing their interactions is computationally costly. We present an algorithm that combines classical shadow tomography with physical constraints on the two-electron reduced density matrix (2-RDM) to treat excited states. The method reduces the number of measurements of the many-electron 2-RDM on quantum computers by (i) approximating the quantum state through a random sampling technique called shadow tomography and (ii) ensuring that the 2-RDM represents an $N$-electron system through imposing $N$-representability constraints by semidefinite programming. This generalizes recent work on the $N$-representability-enhanced shadow tomography of ground-state 2-RDMs. We compute excited-state energies and 2-RDMs of the H$_4$ chain and analyze the critical points along the photoexcited reaction pathway from gauche-1,3-butadiene to bicyclobutane via a conical intersection. The results show that the generalized shadow tomography retains critical multireference correlation effects while significantly reducing the number of required measurements, offering a promising avenue for the efficient treatment of electronically excited states on quantum devices.
Related papers
- The multi-state geometry of shift current and polarization [44.99833362998488]
We employ quantum state projectors to develop an explicitly gauge-invariant formalism.
We provide a simple expression for the shift current that resolves its precise relation to the moments of electronic polarization.
We reveal its decomposition into the sum of the skewness of the occupied states and intrinsic multi-state geometry.
arXiv Detail & Related papers (2024-09-24T18:00:02Z) - Quantum-centric strong and dynamical electron correlation: A resource-efficient second-order $N$-electron valence perturbation theory formulation for near-term quantum devices [0.0]
We present a measurement-cost efficient implementation of Strongly-Contracted $N$-Electron Valence Perturbation Theory (SC-NEVPT2) for use on near-term quantum devices.
arXiv Detail & Related papers (2024-05-24T10:37:31Z) - Fewer measurements from shadow tomography with $N$-representability
conditions [0.0]
We present an algorithm for realizing fewer measurements in the shadow tomography of many-body systems by imposing $N$-representability constraints.
Results demonstrate a significant reduction in the number of measurements with important applications to quantum many-body simulations on near-term quantum devices.
arXiv Detail & Related papers (2023-12-18T21:23:16Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Regression of high dimensional angular momentum states of light [47.187609203210705]
We present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce.
We showcase our approach in a real photonic setup, generating up-to-four-dimensional OAM states through a quantum walk dynamics.
arXiv Detail & Related papers (2022-06-20T16:16:48Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Steady-state photoluminescence and nanoscopy of two near-identical
emitters with dipole-dipole coupling [0.0]
We report progress in the theory of photoluminescence and light scattering by two closely spaced particles.
This study is based on our original method to derive the master equation for a system of coupled quantum emitters driven by a cw laser.
arXiv Detail & Related papers (2021-12-28T16:23:49Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Quantum process tomography of a M{\o}lmer-S{\o}rensen gate via a global
beam [0.0]
Tomographic analysis of identity and delay processes reveals dominant error contributions from laser decoherence and slow qubit frequency drift.
We use this framework on two co-trapped $40$Ca$+$ ions to analyze both an optimized and an overpowered Molmer-Sorensen gate.
arXiv Detail & Related papers (2021-01-12T18:14:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.