論文の概要: Atmospheric Transport Modeling of CO$_2$ with Neural Networks
- arxiv url: http://arxiv.org/abs/2408.11032v1
- Date: Tue, 20 Aug 2024 17:33:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 12:45:00.595143
- Title: Atmospheric Transport Modeling of CO$_2$ with Neural Networks
- Title(参考訳): ニューラルネットワークによるCO$_2$の大気輸送モデリング
- Authors: Vitus Benson, Ana Bastos, Christian Reimers, Alexander J. Winkler, Fanny Yang, Markus Reichstein,
- Abstract要約: 大気中のCO$の分布を大気トレーサー輸送モデルで正確に記述することは、温室効果ガスモニタリングおよび検証支援システムに不可欠である。
大きな深層ニューラルネットワークは、大気の3Dモデリングを必要とする気象予報に革命を起こす可能性がある。
本研究では,気象予測の最先端として実証された4種類の深層ニューラルネットワークについて検討し,大気トレーサー輸送モデルの有用性について検討した。
- 参考スコア(独自算出の注目度): 46.26819563674888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately describing the distribution of CO$_2$ in the atmosphere with atmospheric tracer transport models is essential for greenhouse gas monitoring and verification support systems to aid implementation of international climate agreements. Large deep neural networks are poised to revolutionize weather prediction, which requires 3D modeling of the atmosphere. While similar in this regard, atmospheric transport modeling is subject to new challenges. Both, stable predictions for longer time horizons and mass conservation throughout need to be achieved, while IO plays a larger role compared to computational costs. In this study we explore four different deep neural networks (UNet, GraphCast, Spherical Fourier Neural Operator and SwinTransformer) which have proven as state-of-the-art in weather prediction to assess their usefulness for atmospheric tracer transport modeling. For this, we assemble the CarbonBench dataset, a systematic benchmark tailored for machine learning emulators of Eulerian atmospheric transport. Through architectural adjustments, we decouple the performance of our emulators from the distribution shift caused by a steady rise in atmospheric CO$_2$. More specifically, we center CO$_2$ input fields to zero mean and then use an explicit flux scheme and a mass fixer to assure mass balance. This design enables stable and mass conserving transport for over 6 months with all four neural network architectures. In our study, the SwinTransformer displays particularly strong emulation skill (90-day $R^2 > 0.99$), with physically plausible emulation even for forward runs of multiple years. This work paves the way forward towards high resolution forward and inverse modeling of inert trace gases with neural networks.
- Abstract(参考訳): 大気中のCO$_2$の分布を大気中のトレーサー輸送モデルで正確に記述することは、温室効果ガスモニタリングおよび検証支援システムにおいて、国際気候協定の実施を支援するために不可欠である。
大きな深層ニューラルネットワークは、大気の3Dモデリングを必要とする気象予報に革命を起こす可能性がある。
この点で類似しているが、大気輸送モデリングは新しい課題に直面している。
より長い時間的地平線と大量保存のための安定な予測はどちらも達成する必要があるが、IOは計算コストよりも大きな役割を担っている。
本研究では,気象予報技術として実証された4つの異なる深層ニューラルネットワーク(UNet, GraphCast, Spherical Fourier Neural Operator, SwinTransformer)について検討し,大気トレーサー輸送モデルの有用性を評価する。
このために、ユーレリア大気輸送の機械学習エミュレータに適した、システマティックなベンチマークであるCarbonBenchデータセットを組み立てる。
建築調整を通じて,大気中のCO$2$の安定上昇に伴う分布変化からエミュレータの性能を分離する。
より具体的には、CO$_2$入力場を平均ゼロとし、次に明示的なフラックススキームと質量固定器を用いて質量バランスを確保する。
この設計により、4つのニューラルネットワークアーキテクチャすべてで6ヶ月以上にわたって安定かつ大量保存されたトランスポートが可能になる。
本研究では,SwinTransformerのエミュレーション能力は特に強い(90-day $R^2 > 0.99$)。
この研究は、ニューラルネットワークを用いた不活性トレースガスの高分解能前方および逆モデリングに向けた道を開く。
関連論文リスト
- Comparing and Contrasting Deep Learning Weather Prediction Backbones on Navier-Stokes and Atmospheric Dynamics [41.00712556599439]
私たちは、最も顕著なディープラーニング天気予報モデルと背骨を比較し、対比します。
合成2次元非圧縮性ナビエストークスと実世界の気象動態を予測してこれを達成した。
365日間の長距離気象観測では、球面データ表現を定式化するアーキテクチャにおいて、優れた安定性と物理的健全性を観察する。
論文 参考訳(メタデータ) (2024-07-19T08:59:00Z) - A Scalable Real-Time Data Assimilation Framework for Predicting Turbulent Atmosphere Dynamics [8.012940782999975]
我々は,汎用リアルタイムデータ同化フレームワークを導入し,そのエンドツーエンド性能をFrontierスーパーコンピュータ上で実証する。
このフレームワークは、アンサンブルスコアフィルタ(EnSF)とビジョントランスフォーマーベースのサロゲートの2つの主要モジュールから構成される。
ExascaleスーパーコンピュータであるFrontier上では、私たちのフレームワークの強いスケーリングと弱いスケーリングの両方を1024GPUで実証しています。
論文 参考訳(メタデータ) (2024-07-16T20:44:09Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Learned coupled inversion for carbon sequestration monitoring and
forecasting with Fourier neural operators [2.207988653560308]
炭素貯蔵沈降の地震観測は, 流体物理と波動物理の両方が関与する難しい問題である。
本稿では、波動モデリング演算子、岩石特性変換およびプロキシ流体流シミュレータに基づく学習結合型逆変換フレームワークを提案する。
本研究では,流体流シミュレータのプロキシとしてフーリエニューラル演算子を計算コストのごく一部で正確に利用できることを示す。
論文 参考訳(メタデータ) (2022-03-27T21:16:27Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Skillful Twelve Hour Precipitation Forecasts using Large Context Neural
Networks [8.086653045816151]
現在の運用予測モデルは物理に基づいており、大気をシミュレートするためにスーパーコンピュータを使用している。
ニューラルネットワークに基づく新しい気象モデルのクラスは、天気予報のパラダイムシフトを表している。
最大12時間前に降水予測が可能なニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-14T22:53:04Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
深層畳み込みニューラルネットワーク(CNN)を用いたデータ駆動型世界天気予報フレームワークを提案する。
このフレームワークの新しい開発には、オフラインの体積保存的マッピングから立方体球格子へのマッピングが含まれる。
我々のモデルでは、入力された大気状態の少ない変数から複雑な表面温度パターンを予測することができる。
論文 参考訳(メタデータ) (2020-03-15T19:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。