An Interpretable Deep Learning Approach for Morphological Script Type Analysis
- URL: http://arxiv.org/abs/2408.11150v1
- Date: Tue, 20 Aug 2024 19:15:06 GMT
- Title: An Interpretable Deep Learning Approach for Morphological Script Type Analysis
- Authors: Malamatenia Vlachou-Efstathiou, Ioannis Siglidis, Dominique Stutzmann, Mathieu Aubry,
- Abstract summary: We propose an interpretable deep learning-based approach to morphological script type analysis.
More precisely, we adapt a deep instance segmentation method to learn comparable character prototypes.
We demonstrate our approach by applying it to the Textualis Formata script type and its two subtypes formalized by A. Derolez: Northern and Southern Textualis
- Score: 15.142597136864618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Defining script types and establishing classification criteria for medieval handwriting is a central aspect of palaeographical analysis. However, existing typologies often encounter methodological challenges, such as descriptive limitations and subjective criteria. We propose an interpretable deep learning-based approach to morphological script type analysis, which enables systematic and objective analysis and contributes to bridging the gap between qualitative observations and quantitative measurements. More precisely, we adapt a deep instance segmentation method to learn comparable character prototypes, representative of letter morphology, and provide qualitative and quantitative tools for their comparison and analysis. We demonstrate our approach by applying it to the Textualis Formata script type and its two subtypes formalized by A. Derolez: Northern and Southern Textualis
Related papers
- Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
State-of-the-art approaches usually involve fine-tuning models on large annotated datasets, which are costly to produce.
We propose and release a qualitative and versatile few-shot learning methodology as a common paradigm for any claim-based textual classification task.
We illustrate this methodology in the context of three tasks: climate change contrarianism detection, topic/stance classification and depression-relates symptoms detection.
arXiv Detail & Related papers (2024-05-09T12:03:38Z) - Linguistics from a topological viewpoint [2.4238741865874363]
In this paper, we describe a workflow to analyze the topological shapes of South American languages.
As a result, it is difficult to have a clear visualization of the data.
arXiv Detail & Related papers (2024-03-16T23:10:42Z) - Long-form analogies generated by chatGPT lack human-like
psycholinguistic properties [0.5884031187931463]
We apply psycholinguistic methods to evaluate individual sentences from long-form analogies about biochemical concepts.
We compare analogies generated by human subjects enrolled in introductory biochemistry courses to analogies generated by chatGPT.
arXiv Detail & Related papers (2023-06-07T15:42:31Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
The last decade has seen a surge of research in this area due to the unprecedented success of deep learning.
This paper fills the gap by reviewing the state-of-the-art approaches from 1961 to 2021.
We create a taxonomy for text classification according to the text involved and the models used for feature extraction and classification.
arXiv Detail & Related papers (2020-08-02T00:09:03Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
This work introduces a new method to consider subjectivity and general context dependency in text analysis.
By using similarity measure between words, we are able to extract the relative relevance of the elements in the benchmark.
This method could be applied to all the cases where evaluating subjectivity is relevant to understand the relative value or meaning of a text.
arXiv Detail & Related papers (2020-05-12T21:26:04Z) - Evaluating text coherence based on the graph of the consistency of
phrases to identify symptoms of schizophrenia [0.0]
State-of-the-art methods of the detection of schizophrenia symptoms based on the estimation of text coherence have been analyzed.
The method based on the graph of the consistency of phrases has been proposed to evaluate the semantic coherence and the cohesion of a text.
arXiv Detail & Related papers (2020-05-06T08:38:20Z) - Evaluating Transformer-Based Multilingual Text Classification [55.53547556060537]
We argue that NLP tools perform unequally across languages with different syntactic and morphological structures.
We calculate word order and morphological similarity indices to aid our empirical study.
arXiv Detail & Related papers (2020-04-29T03:34:53Z) - Deep Learning Based Text Classification: A Comprehensive Review [75.8403533775179]
We provide a review of more than 150 deep learning based models for text classification developed in recent years.
We also provide a summary of more than 40 popular datasets widely used for text classification.
arXiv Detail & Related papers (2020-04-06T02:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.