A Short Review and Evaluation of SAM2's Performance in 3D CT Image Segmentation
- URL: http://arxiv.org/abs/2408.11210v1
- Date: Tue, 20 Aug 2024 22:08:42 GMT
- Title: A Short Review and Evaluation of SAM2's Performance in 3D CT Image Segmentation
- Authors: Yufan He, Pengfei Guo, Yucheng Tang, Andriy Myronenko, Vishwesh Nath, Ziyue Xu, Dong Yang, Can Zhao, Daguang Xu, Wenqi Li,
- Abstract summary: We review existing benchmarks and point out that the SAM2 paper clearly outlines a zero-shot evaluation pipeline.
Our findings reveal that directly applying SAM2 on 3D medical imaging in a zero-shot manner is far from satisfactory.
For smaller single-connected objects like kidney and aorta, SAM2 performs reasonably well but for most organs it is still far behind state-of-the-art 3D annotation methods.
- Score: 18.543271487108868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the release of Segment Anything 2 (SAM2), the medical imaging community has been actively evaluating its performance for 3D medical image segmentation. However, different studies have employed varying evaluation pipelines, resulting in conflicting outcomes that obscure a clear understanding of SAM2's capabilities and potential applications. We shortly review existing benchmarks and point out that the SAM2 paper clearly outlines a zero-shot evaluation pipeline, which simulates user clicks iteratively for up to eight iterations. We reproduced this interactive annotation simulation on 3D CT datasets and provided the results and code~\url{https://github.com/Project-MONAI/VISTA}. Our findings reveal that directly applying SAM2 on 3D medical imaging in a zero-shot manner is far from satisfactory. It is prone to generating false positives when foreground objects disappear, and annotating more slices cannot fully offset this tendency. For smaller single-connected objects like kidney and aorta, SAM2 performs reasonably well but for most organs it is still far behind state-of-the-art 3D annotation methods. More research and innovation are needed for 3D medical imaging community to use SAM2 correctly.
Related papers
- SAM2Point: Segment Any 3D as Videos in Zero-shot and Promptable Manners [87.76470518069338]
We introduce SAM2Point, a preliminary exploration adapting Segment Anything Model 2 (SAM 2) for promptable 3D segmentation.
Our framework supports various prompt types, including 3D points, boxes, and masks, and can generalize across diverse scenarios, such as 3D objects, indoor scenes, sparse outdoor environments, and raw LiDAR.
To our best knowledge, we present the most faithful implementation of SAM in 3D, which may serve as a starting point for future research in promptable 3D segmentation.
arXiv Detail & Related papers (2024-08-29T17:59:45Z) - SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
We prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models.
We propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation.
arXiv Detail & Related papers (2024-08-16T17:55:38Z) - Segment Anything in Medical Images and Videos: Benchmark and Deployment [8.51742337818826]
We first present a comprehensive benchmarking of the Segment Anything Model 2 (SAM2) across 11 medical image modalities and videos.
Then, we develop a transfer learning pipeline and demonstrate SAM2 can be quickly adapted to medical domain by fine-tuning.
We implement SAM2 as a 3D slicer plugin and Gradio API for efficient 3D image and video segmentation.
arXiv Detail & Related papers (2024-08-06T17:58:18Z) - Interactive 3D Medical Image Segmentation with SAM 2 [17.523874868612577]
We explore the zero-shot capabilities of SAM 2, the next-generation Meta SAM model trained on videos, for 3D medical image segmentation.
By treating sequential 2D slices of 3D images as video frames, SAM 2 can fully automatically propagate annotations from a single frame to the entire 3D volume.
arXiv Detail & Related papers (2024-08-05T16:58:56Z) - Segment anything model 2: an application to 2D and 3D medical images [16.253160684182895]
Segment Anything Model (SAM) has gained significant attention because of its ability to segment various objects in images given a prompt.
Recently developed SAM 2 has extended this ability to video inputs.
This opens an opportunity to apply SAM to 3D images, one of the fundamental tasks in the medical imaging field.
arXiv Detail & Related papers (2024-08-01T17:57:25Z) - TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images [31.012744937603436]
We introduce the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images.
Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human.
We develop a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the powerful segmentation model SAM for 3D segmentation.
arXiv Detail & Related papers (2024-01-25T05:50:48Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - SAM3D: Segment Anything Model in Volumetric Medical Images [11.764867415789901]
We introduce SAM3D, an innovative adaptation tailored for 3D volumetric medical image analysis.
Unlike current SAM-based methods that segment volumetric data by converting the volume into separate 2D slices for individual analysis, our SAM3D model processes the entire 3D volume image in a unified approach.
arXiv Detail & Related papers (2023-09-07T06:05:28Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - TomoSAM: a 3D Slicer extension using SAM for tomography segmentation [62.997667081978825]
TomoSAM has been developed to integrate the cutting-edge Segment Anything Model (SAM) into 3D Slicer.
SAM is a promptable deep learning model that is able to identify objects and create image masks in a zero-shot manner.
The synergy between these tools aids in the segmentation of complex 3D datasets from tomography or other imaging techniques.
arXiv Detail & Related papers (2023-06-14T16:13:27Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.