Medical SAM 2: Segment medical images as video via Segment Anything Model 2
- URL: http://arxiv.org/abs/2408.00874v2
- Date: Wed, 04 Dec 2024 23:51:25 GMT
- Title: Medical SAM 2: Segment medical images as video via Segment Anything Model 2
- Authors: Jiayuan Zhu, Abdullah Hamdi, Yunli Qi, Yueming Jin, Junde Wu,
- Abstract summary: We introduce Medical SAM 2 (MedSAM-2), a generalized auto-tracking model for universal 2D and 3D medical image segmentation.
We evaluate MedSAM-2 on five 2D tasks and nine 3D tasks, including white blood cells, optic cups, retinal vessels, mandibles, coronary arteries, kidney tumors, liver tumors, breast cancer, nasopharynx cancer, vestibular schwan, mediastinal lymph nodules, cerebral artery, inferior alveolar nerve, and abdominal organs.
- Score: 17.469217682817586
- License:
- Abstract: Medical image segmentation plays a pivotal role in clinical diagnostics and treatment planning, yet existing models often face challenges in generalization and in handling both 2D and 3D data uniformly. In this paper, we introduce Medical SAM 2 (MedSAM-2), a generalized auto-tracking model for universal 2D and 3D medical image segmentation. The core concept is to leverage the Segment Anything Model 2 (SAM2) pipeline to treat all 2D and 3D medical segmentation tasks as a video object tracking problem. To put it into practice, we propose a novel \emph{self-sorting memory bank} mechanism that dynamically selects informative embeddings based on confidence and dissimilarity, regardless of temporal order. This mechanism not only significantly improves performance in 3D medical image segmentation but also unlocks a \emph{One-Prompt Segmentation} capability for 2D images, allowing segmentation across multiple images from a single prompt without temporal relationships. We evaluated MedSAM-2 on five 2D tasks and nine 3D tasks, including white blood cells, optic cups, retinal vessels, mandibles, coronary arteries, kidney tumors, liver tumors, breast cancer, nasopharynx cancer, vestibular schwannoma, mediastinal lymph nodules, cerebral artery, inferior alveolar nerve, and abdominal organs, comparing it against state-of-the-art (SOTA) models in task-tailored, general and interactive segmentation settings. Our findings demonstrate that MedSAM-2 surpasses a wide range of existing models and updates new SOTA on several benchmarks. The code is released on the project page: https://supermedintel.github.io/Medical-SAM2/.
Related papers
- DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
We propose a dual-branch adapted SAM framework, named DB-SAM, to bridge the gap between natural and 2D/3D medical data.
Our proposed DB-SAM achieves an absolute gain of 8.8%, compared to a recent medical SAM adapter in the literature.
arXiv Detail & Related papers (2024-10-05T14:36:43Z) - Novel adaptation of video segmentation to 3D MRI: efficient zero-shot knee segmentation with SAM2 [1.6237741047782823]
We introduce a method for zero-shot, single-prompt segmentation of 3D knee MRI by adapting Segment Anything Model 2.
By treating slices from 3D medical volumes as individual video frames, we leverage SAM2's advanced capabilities to generate motion- and spatially-aware predictions.
We demonstrate that SAM2 can efficiently perform segmentation tasks in a zero-shot manner with no additional training or fine-tuning.
arXiv Detail & Related papers (2024-08-08T21:39:15Z) - Interactive 3D Medical Image Segmentation with SAM 2 [17.523874868612577]
We explore the zero-shot capabilities of SAM 2, the next-generation Meta SAM model trained on videos, for 3D medical image segmentation.
By treating sequential 2D slices of 3D images as video frames, SAM 2 can fully automatically propagate annotations from a single frame to the entire 3D volume.
arXiv Detail & Related papers (2024-08-05T16:58:56Z) - Segment anything model 2: an application to 2D and 3D medical images [16.253160684182895]
Segment Anything Model (SAM) has gained significant attention because of its ability to segment various objects in images given a prompt.
Recently developed SAM 2 has extended this ability to video inputs.
This opens an opportunity to apply SAM to 3D images, one of the fundamental tasks in the medical imaging field.
arXiv Detail & Related papers (2024-08-01T17:57:25Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - MedLSAM: Localize and Segment Anything Model for 3D CT Images [13.320012515543116]
We introduce MedLAM, a 3D medical foundation localization model that accurately identifies any anatomical part within the body using only a few template scans.
We developed MedLSAM by integrating MedLAM with the Segment Anything Model (SAM)
Our findings are twofold: 1) MedLAM can directly localize anatomical structures using just a few template scans, achieving performance comparable to fully supervised models; 2) MedLSAM closely matches the performance of SAM and its specialized medical adaptations with manual prompts, while minimizing the need for extensive point annotations across the entire dataset.
arXiv Detail & Related papers (2023-06-26T15:09:02Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.