論文の概要: Automatic Image Annotation (AIA) of AlmondNet-20 Method for Almond Detection by Improved CNN-based Model
- arxiv url: http://arxiv.org/abs/2408.11253v2
- Date: Wed, 04 Dec 2024 23:50:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:38:17.812217
- Title: Automatic Image Annotation (AIA) of AlmondNet-20 Method for Almond Detection by Improved CNN-based Model
- Title(参考訳): 改良CNNモデルによるオールモンド検出のためのAlmondNet-20法の自動画像アノテーション(AIA)
- Authors: Mohsen Asghari Ilani, Saba Moftakhar Tehran, Ashkan Kavei, Arian Radmehr,
- Abstract要約: 本稿では,アーモンドとその殻の分解過程の向上を目的とした,革新的な方法論を提案する。
最先端のDeep Convolutional Neural Networks(CNN)、特にAlmondNet-20アーキテクチャを活用して、これまでにない精度で99%以上を達成している。
本モデルでは,1000エポック以上の微妙な訓練を行った結果,99%の精度,0.0567の最小損失関数が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In response to the burgeoning global demand for premium agricultural products, particularly within the competitive nut market, this paper introduces an innovative methodology aimed at enhancing the grading process for almonds and their shells. Leveraging state-of-the-art Deep Convolutional Neural Networks (CNNs), specifically the AlmondNet-20 architecture, our study achieves exceptional accuracy exceeding 99%, facilitated by the utilization of a 20-layer CNN model. To bolster robustness in differentiating between almonds and shells, data augmentation techniques are employed, ensuring the reliability and accuracy of our classification system. Our model, meticulously trained over 1000 epochs, demonstrates remarkable performance, boasting an accuracy rate of 99% alongside a minimal loss function of 0.0567. Rigorous evaluation through test datasets further validates the efficacy of our approach, revealing impeccable precision, recall, and F1-score metrics for almond detection. Beyond its technical prowess, this advanced classification system offers tangible benefits to both industry experts and non-specialists alike, ensuring globally reliable almond classification. The application of deep learning algorithms, as showcased in our study, not only enhances grading accuracy but also presents opportunities for product patents, thereby contributing to the economic value of our nation. Through the adoption of cutting-edge technologies such as the AlmondNet-20 model, we pave the way for future advancements in agricultural product classification, ultimately enriching global trade and economic prosperity.
- Abstract(参考訳): 本稿では,特に競争力のあるナッツ市場における高級農産物の世界的な需要の高まりに応えて,アーモンドとその殻の格付けプロセスの向上を目的とした革新的な手法を提案する。
最先端のDeep Convolutional Neural Networks(CNN)、特にAlmondNet-20アーキテクチャを活用することで、20層CNNモデルの利用により、99%を超える例外的精度を達成できる。
アーモンドと貝殻の識別におけるロバスト性を高めるため,データ拡張技術を用いて分類システムの信頼性と精度を確保する。
本モデルでは,1000エポック以上の微妙な訓練を行った結果,99%の精度,0.0567の最小損失関数が得られた。
テストデータセットによる厳密な評価は、我々のアプローチの有効性をさらに検証し、アーモンド検出のための不正確な精度、リコール、F1スコアメトリクスを明らかにする。
技術だけでなく、この高度な分類システムは、業界の専門家と非専門家の両方に有意義な利益をもたらし、グローバルに信頼できるアーモンド分類を確実にする。
本研究で示すように,ディープラーニングアルゴリズムの適用は,学習精度の向上だけでなく,製品特許の機会も与え,我が国の経済的価値に寄与する。
AlmondNet-20モデルのような最先端技術の導入により、我々は将来の農業製品分類の進歩の道を開き、最終的にはグローバルな貿易と経済の繁栄を豊かにする。
関連論文リスト
- Rare Class Prediction Model for Smart Industry in Semiconductor Manufacturing [1.3955252961896323]
本研究では, 半導体製造プロセスから収集したIn situデータに対して, 希少なクラス予測手法を開発した。
第一の目的は、ノイズとクラス不均衡の問題に対処し、クラス分離を強化するモデルを構築することである。
ROC曲線はAUCが0.95、精度が0.66、リコールが0.96である。
論文 参考訳(メタデータ) (2024-06-06T22:09:43Z) - SURE: SUrvey REcipes for building reliable and robust deep networks [12.268921703825258]
本稿では,深層ニューラルネットワークにおける不確実性推定手法を再検討し,信頼性を高めるために一連の手法を統合する。
我々は,不確実性推定の有効性を示す重要なテストベッドである故障予測のベンチマークに対して,SUREを厳格に評価する。
データ破損、ラベルノイズ、長い尾のクラス分布といった現実世界の課題に適用した場合、SUREは顕著な堅牢性を示し、現在の最先端の特殊手法と同等あるいは同等な結果をもたらす。
論文 参考訳(メタデータ) (2024-03-01T13:58:19Z) - Leveraging Pre-trained CNNs for Efficient Feature Extraction in Rice Leaf Disease Classification [1.4874449172133892]
我々は、事前訓練された畳み込みニューラルネットワーク(CNN)における特徴抽出手法の統合の影響を厳格に評価する。
オリエントグラディエント(HOG)のヒストグラムはアーキテクチャ全体で大幅に改善され、特にEfficientNet-B7の精度は92%から97%に向上した。
Grad-CAMは、HOG統合が疾患特異的な特徴への注意を高め、観察されたパフォーマンス向上を裏付けることを明らかにした。
論文 参考訳(メタデータ) (2024-02-26T07:19:48Z) - Churn Prediction via Multimodal Fusion Learning:Integrating Customer
Financial Literacy, Voice, and Behavioral Data [14.948017876322597]
本稿では,金融サービスプロバイダの顧客リスクレベルを特定するためのマルチモーダル融合学習モデルを提案する。
弊社のアプローチは、顧客感情の財務リテラシー(FL)レベルと、財務行動データを統合している。
我々の新しいアプローチは、チャーン予測の顕著な改善を示し、テスト精度91.2%、平均精度66、マクロ平均F1スコア54を達成した。
論文 参考訳(メタデータ) (2023-12-03T06:28:55Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Recognition of Defective Mineral Wool Using Pruned ResNet Models [88.24021148516319]
我々はミネラルウールのための視覚品質管理システムを開発した。
ウール標本のX線画像が収集され、欠陥および非欠陥サンプルのトレーニングセットが作成された。
我々は98%以上の精度のモデルを得たが、同社の現在の手順と比較すると、20%以上の欠陥製品を認識することができる。
論文 参考訳(メタデータ) (2022-11-01T13:58:02Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Self-supervised Semi-supervised Learning for Data Labeling and Quality
Evaluation [10.483508279350195]
提案手法では,効率的なデータラベリングとアノテーション検証の課題に対処する。
本稿では,自己教師付き半教師付き学習を活用し,データラベリングや検証タスクの構築に利用する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-22T00:59:00Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
弱教師付き有色物体検出(WSOD)は,画像レベルのアノテーションを用いた有色度モデルの開発を目的としている。
擬似ラベルとネットワーク予測の相互校正ループを明確に設定し,自己校正学習戦略を提案する。
十分に整合したアノテーションを持つはるかに小さなデータセットであっても、モデルがより優れたパフォーマンスと一般化性を達成するのに役立ちます。
論文 参考訳(メタデータ) (2021-09-04T02:45:22Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。