論文の概要: ViIK: Flow-based Vision Inverse Kinematics Solver with Fusing Collision Checking
- arxiv url: http://arxiv.org/abs/2408.11293v2
- Date: Wed, 28 Aug 2024 04:09:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 18:22:33.457397
- Title: ViIK: Flow-based Vision Inverse Kinematics Solver with Fusing Collision Checking
- Title(参考訳): ViIK:Fusing Collision Checkingを用いたフローベース視覚逆キネマティクス解法
- Authors: Qinglong Meng, Chongkun Xia, Xueqian Wang,
- Abstract要約: Vision Inverse Kinematics solver (ViIK) は、逆キネマティクスと衝突チェックを融合することにより、様々な利用可能な構成を出力できる。
ViIKは40ミリ秒以内で1000個の構成を出力でき、精度は約3ミリ秒と1.5度である。
- 参考スコア(独自算出の注目度): 4.762593660623934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse Kinematics (IK) is to find the robot's configurations that satisfy the target pose of the end effector. In motion planning, diverse configurations were required in case a feasible trajectory was not found. Meanwhile, collision checking (CC), e.g. Oriented bounding box (OBB), Discrete Oriented Polytope (DOP), and Quickhull \cite{quickhull}, needs to be done for each configuration provided by the IK solver to ensure every goal configuration for motion planning is available. This means the classical IK solver and CC algorithm should be executed repeatedly for every configuration. Thus, the preparation time is long when the required number of goal configurations is large, e.g. motion planning in cluster environments. Moreover, structured maps, which might be difficult to obtain, were required by classical collision-checking algorithms. To sidestep such two issues, we propose a flow-based vision method that can output diverse available configurations by fusing inverse kinematics and collision checking, named Vision Inverse Kinematics solver (ViIK). Moreover, ViIK uses RGB images as the perception of environments. ViIK can output 1000 configurations within 40 ms, and the accuracy is about 3 millimeters and 1.5 degrees. The higher accuracy can be obtained by being refined by the classical IK solver within a few iterations. The self-collision rates can be lower than 2%. The collision-with-env rates can be lower than 10% in most scenes. The code is available at: https://github.com/AdamQLMeng/ViIK.
- Abstract(参考訳): Inverse Kinematics (IK) は、エンドエフェクタのターゲットポーズを満たすロボットの構成を見つけることである。
運動計画では、実現可能な軌道が見つからない場合に様々な構成が必要とされた。
一方、衝突チェック(CC)、eg Oriented bounding box(OBB)、Disdisrete Oriented Polytope(DOP)、Quickhull \cite{quickhull}は、動作計画のすべての目標設定が利用可能であるように、IKソルバが提供する各設定に対して行われる必要がある。
つまり、古典的なIKソルバとCCアルゴリズムは、構成毎に繰り返し実行されるべきである。
したがって、例えばクラスタ環境における運動計画など、要求される目標設定の数が大きくなると、準備時間が長くなる。
さらに、古典的な衝突検定アルゴリズムでは、入手が難しいような構造化写像が必要であった。
このような2つの問題を解決するために,視覚逆運動学(ViIK)と呼ばれる,逆運動学と衝突チェックを融合させることにより,様々な利用可能な構成を出力できるフローベース視覚法を提案する。
さらに、VIKは環境の知覚としてRGBイメージを使用する。
ViIKは40ミリ秒以内で1000個の構成を出力でき、精度は約3ミリ秒と1.5度である。
より高い精度は、古典的IKソルバによって数イテレーションで洗練されることで得られる。
自給自足率は2%以下である。
衝突と衝突の速度は、ほとんどの場面で10%以下である。
コードは、https://github.com/AdamQLMeng/ViIK.comで入手できる。
関連論文リスト
- RD-VIO: Robust Visual-Inertial Odometry for Mobile Augmented Reality in
Dynamic Environments [55.864869961717424]
視覚的・視覚的慣性オドメトリーシステムでは、動的シーンや純粋な回転の問題に対処することが通常困難である。
我々はこれらの問題に対処するためにRD-VIOと呼ばれる新しい視覚-慣性オドメトリーシステム(VIO)を設計する。
論文 参考訳(メタデータ) (2023-10-23T16:30:39Z) - Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
ビデオフレームは、より流動的な視覚体験のためにフレームレートを上げることができる、重要な低レベルな計算ビジョンタスクである。
既存の手法は、高度なモーションモデルと合成ネットワークを利用することで大きな成功を収めた。
WaveletVFIは、同様の精度を維持しながら最大40%の計算を削減できるため、他の最先端技術に対してより効率的に処理できる。
論文 参考訳(メタデータ) (2023-09-07T06:41:15Z) - CabiNet: Scaling Neural Collision Detection for Object Rearrangement
with Procedural Scene Generation [54.68738348071891]
私たちはまず、さまざまな日常環境において、650万以上の散らばったシーン(前よりも桁違いに多い)を生成します。
このデータから合成部分点雲をレンダリングし、それをCabiNetモデルアーキテクチャのトレーニングに使用します。
CabiNetは、オブジェクトとシーンポイントの雲を受け入れる衝突モデルである。
論文 参考訳(メタデータ) (2023-04-18T21:09:55Z) - T*$\varepsilon$ -- Bounded-Suboptimal Efficient Motion Planning for
Minimum-Time Planar Curvature-Constrained Systems [7.277760003553328]
本研究では,障害物の存在下での曲率制約系の衝突のない経路を見つけることの問題点を考察する。
有界-準最適解を求めることにより、使用した時間-最適遷移の数を劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-04-04T17:38:36Z) - DeepScale: An Online Frame Size Adaptation Framework to Accelerate
Visual Multi-object Tracking [8.878656943106934]
DeepScaleは、追跡スループットを高速化するモデルに依存しないフレームサイズ選択アプローチである。
フレームサイズを実行時に適応させることで、トラッキング精度と速度の適切なトレードオフを見つけることができる。
最先端のトラッカーであるDeepScale++と比較して、DeepScaleの亜種であるDeepScale++は、適度な劣化だけで1.57倍の高速化を実現している。
論文 参考訳(メタデータ) (2021-07-22T00:12:58Z) - BEVDetNet: Bird's Eye View LiDAR Point Cloud based Real-time 3D Object
Detection for Autonomous Driving [6.389322215324224]
キーポイント,ボックス予測,方向予測を用いたオブジェクト中心検出のための単一統一モデルとして,新しいセマンティックセマンティックセマンティクスアーキテクチャを提案する。
提案されたアーキテクチャは簡単に拡張でき、追加の計算なしで Road のようなセマンティックセグメンテーションクラスを含めることができる。
モデルは、KITTIデータセット上のIoU=0.5の平均精度で2%の最小精度の劣化で、他のトップ精度モデルよりも5倍高速です。
論文 参考訳(メタデータ) (2021-04-21T22:06:39Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
本研究では, 運動場から独立物体の動きを復元する幾何学的解析により, モジュラーネットワークを提案する。
2つの連続フレームを入力とし、背景のセグメンテーションマスクと複数の剛体移動オブジェクトを予測し、3次元の剛体変換によってパラメータ化する。
本手法はkittiおよびsintelにおける剛体運動セグメンテーションの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-11T04:20:30Z) - Object Rearrangement Using Learned Implicit Collision Functions [61.90305371998561]
本研究では,シーン内の6DOFオブジェクトのポーズに対して,シーンとクエリ対象点の雲を受け付け,衝突を予測できる学習的衝突モデルを提案する。
我々は,テーブルトップ再構成タスクにおけるモデル予測経路積分(MPPI)ポリシーの一部として,学習された衝突モデルを活用する。
学習モデルは従来のパイプラインよりも優れており、シミュレーションされた衝突クエリのデータセット上では9.8%の精度で学習精度が向上している。
論文 参考訳(メタデータ) (2020-11-21T05:36:06Z) - Fast Motion Understanding with Spatiotemporal Neural Networks and
Dynamic Vision Sensors [99.94079901071163]
本稿では,高速な動きを推論するための動的視覚センサ(DVS)システムを提案する。
ロボットが15m/s以上の速度で接近する小さな物体に反応するケースを考察する。
我々は,23.4m/sで24.73degの誤差を$theta$,18.4mmの平均離散半径予測誤差,衝突予測誤差に対する25.03%の中央値で移動した玩具ダートについて,本システムの結果を強調した。
論文 参考訳(メタデータ) (2020-11-18T17:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。