Improving Out-of-Distribution Data Handling and Corruption Resistance via Modern Hopfield Networks
- URL: http://arxiv.org/abs/2408.11309v1
- Date: Wed, 21 Aug 2024 03:26:16 GMT
- Title: Improving Out-of-Distribution Data Handling and Corruption Resistance via Modern Hopfield Networks
- Authors: Saleh Sargolzaei, Luis Rueda,
- Abstract summary: This study explores the potential of Modern Hopfield Networks (MHN) in improving the ability of computer vision models to handle out-of-distribution data.
We suggest integrating MHN into the baseline models to enhance their robustness.
Our research shows that the proposed integration consistently improves model performance on the MNIST-C dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the potential of Modern Hopfield Networks (MHN) in improving the ability of computer vision models to handle out-of-distribution data. While current computer vision models can generalize to unseen samples from the same distribution, they are susceptible to minor perturbations such as blurring, which limits their effectiveness in real-world applications. We suggest integrating MHN into the baseline models to enhance their robustness. This integration can be implemented during the test time for any model and combined with any adversarial defense method. Our research shows that the proposed integration consistently improves model performance on the MNIST-C dataset, achieving a state-of-the-art increase of 13.84% in average corruption accuracy, a 57.49% decrease in mean Corruption Error (mCE), and a 60.61% decrease in relative mCE compared to the baseline model. Additionally, we investigate the capability of MHN to converge to the original non-corrupted data. Notably, our method does not require test-time adaptation or augmentation with corruptions, underscoring its practical viability for real-world deployment. (Source code publicly available at: https://github.com/salehsargolzaee/Hopfield-integrated-test)
Related papers
- Dynamic Batch Norm Statistics Update for Natural Robustness [5.366500153474747]
We propose a unified framework consisting of a corruption-detection model and BN statistics update.
Our results demonstrate about 8% and 4% accuracy improvement on CIFAR10-C and ImageNet-C.
arXiv Detail & Related papers (2023-10-31T17:20:30Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
We propose a solution called Accumulated Model Combination (AMC)
AMC is a general technique and we propose several instances of it, each having their own advantages depending on the model and data properties.
arXiv Detail & Related papers (2023-05-06T20:56:20Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
We study the problem of test time robustification, i.e., using the test input to improve model robustness.
Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions.
We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable.
arXiv Detail & Related papers (2021-10-18T17:55:11Z) - Newer is not always better: Rethinking transferability metrics, their
peculiarities, stability and performance [5.650647159993238]
Fine-tuning of large pre-trained image and language models on small customized datasets has become increasingly popular.
We show that the statistical problems with covariance estimation drive the poor performance of H-score.
We propose a correction and recommend measuring correlation performance against relative accuracy in such settings.
arXiv Detail & Related papers (2021-10-13T17:24:12Z) - Test-time Batch Statistics Calibration for Covariate Shift [66.7044675981449]
We propose to adapt the deep models to the novel environment during inference.
We present a general formulation $alpha$-BN to calibrate the batch statistics.
We also present a novel loss function to form a unified test time adaptation framework Core.
arXiv Detail & Related papers (2021-10-06T08:45:03Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Revisiting Batch Normalization for Improving Corruption Robustness [85.20742045853738]
We interpret corruption robustness as a domain shift and propose to rectify batch normalization statistics for improving model robustness.
We find that simply estimating and adapting the BN statistics on a few representation samples, without retraining the model, improves the corruption robustness by a large margin.
arXiv Detail & Related papers (2020-10-07T19:56:47Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.