Transfer Learning and the Early Estimation of Single-Photon Source Quality using Machine Learning Methods
- URL: http://arxiv.org/abs/2408.11322v1
- Date: Wed, 21 Aug 2024 04:10:38 GMT
- Title: Transfer Learning and the Early Estimation of Single-Photon Source Quality using Machine Learning Methods
- Authors: David Jacob Kedziora, Anna Musiał, Wojciech Rudno-Rudziński, Bogdan Gabrys,
- Abstract summary: Single-photon sources (SPSs) are central to numerous systems and devices proposed amidst a modern surge in quantum technology.
However, manufacturing schemes remain imperfect, and single-photon emission purity must often be experimentally verified via interferometry.
This study investigates whether SPS quality can be more rapidly inferred from incomplete emission statistics.
- Score: 7.687215328455751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of single-photon sources (SPSs) is central to numerous systems and devices proposed amidst a modern surge in quantum technology. However, manufacturing schemes remain imperfect, and single-photon emission purity must often be experimentally verified via interferometry. Such a process is typically slow and costly, which has motivated growing research into whether SPS quality can be more rapidly inferred from incomplete emission statistics. Hence, this study is a sequel to previous work that demonstrated significant uncertainty in the standard method of quality estimation, i.e. the least-squares fitting of a physically motivated function, and asks: can machine learning (ML) do better? The study leverages eight datasets obtained from measurements involving an exemplary quantum emitter, i.e. a single InGaAs/GaAs epitaxial quantum dot; these eight contexts predominantly vary in the intensity of the exciting laser. Specifically, via a form of `transfer learning', five ML models, three linear and two ensemble-based, are trained on data from seven of the contexts and tested on the eighth. Validation metrics quickly reveal that even a linear regressor can outperform standard fitting when it is tested on the same contexts it was trained on, but the success of transfer learning is less assured, even though statistical analysis, made possible by data augmentation, suggests its superiority as an early estimator. Accordingly, the study concludes by discussing future strategies for grappling with the problem of SPS context dissimilarity, e.g. feature engineering and model adaptation.
Related papers
- Detecting Quantum and Classical Phase Transitions via Unsupervised Machine Learning of the Fisher Information Metric [0.0]
We develop an unsupervised machine learning (ML) method called ClassiFIM.
We find that ClassiFIM reliably detects both topological (e.g., XXZ chain) and dynamical (e.g., metal-insulator transition in Hubbard model) quantum phase transitions.
arXiv Detail & Related papers (2024-08-06T19:34:04Z) - Towards Efficient Quantum Anomaly Detection: One-Class SVMs using
Variable Subsampling and Randomized Measurements [4.180897432770239]
Quantum computing allows significant advancements in kernel calculation and model precision.
We present two distinct approaches: utilizing randomized measurements to evaluate the quantum kernel and implementing the variable subsampling ensemble method.
Experimental results demonstrate a substantial reduction in training and inference times by up to 95% and 25% respectively.
Although unstable, the average precision of randomized measurements discernibly surpasses that of the classical Radial Basis Function kernel.
arXiv Detail & Related papers (2023-12-14T17:42:18Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Harnessing Data Augmentation to Quantify Uncertainty in the Early
Estimation of Single-Photon Source Quality [8.397730500554047]
This study investigates the use of data augmentation, a machine learning technique, to supplement experimental data with bootstrapped samples.
Eight datasets obtained from measurements involving a single InGaAs/GaAs epitaxial quantum dot serve as a proof-of-principle example.
arXiv Detail & Related papers (2023-06-22T05:17:26Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Deep reinforcement learning for quantum multiparameter estimation [0.0]
We introduce a model-free and deep learning-based approach to implement realistic Bayesian quantum metrology tasks.
We prove experimentally the achievement of higher estimation performances than standard methods.
arXiv Detail & Related papers (2022-09-01T18:01:56Z) - Quantifying Unknown Quantum Entanglement via a Hybrid Quantum-Classical
Machine Learning Framework [1.8689488822130746]
In this paper, we compare the performance of two machine learning approaches to quantify unknown entanglement.
We propose a hybrid quantum-classical machine learning framework for this problem, where the key is to train optimal local measurements to generate more informative correlation data.
Our numerical simulations show that the new framework brings us comparable performance with the approach based on moments to quantify unknown entanglement.
arXiv Detail & Related papers (2022-04-25T08:29:24Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
We present a simple yet effective continual learning method for blind image quality assessment (BIQA)
The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability.
We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score.
The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism.
arXiv Detail & Related papers (2021-07-28T15:21:01Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.