Gender Bias Evaluation in Text-to-image Generation: A Survey
- URL: http://arxiv.org/abs/2408.11358v1
- Date: Wed, 21 Aug 2024 06:01:23 GMT
- Title: Gender Bias Evaluation in Text-to-image Generation: A Survey
- Authors: Yankun Wu, Yuta Nakashima, Noa Garcia,
- Abstract summary: We review recent work on gender bias evaluation in text-to-image generation.
We focus on the evaluation of recent popular models such as Stable Diffusion and DALL-E 2.
- Score: 25.702257177921048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of text-to-image generation has brought rising ethical considerations, especially regarding gender bias. Given a text prompt as input, text-to-image models generate images according to the prompt. Pioneering models such as Stable Diffusion and DALL-E 2 have demonstrated remarkable capabilities in producing high-fidelity images from natural language prompts. However, these models often exhibit gender bias, as studied by the tendency of generating man from prompts such as "a photo of a software developer". Given the widespread application and increasing accessibility of these models, bias evaluation is crucial for regulating the development of text-to-image generation. Unlike well-established metrics for evaluating image quality or fidelity, the evaluation of bias presents challenges and lacks standard approaches. Although biases related to other factors, such as skin tone, have been explored, gender bias remains the most extensively studied. In this paper, we review recent work on gender bias evaluation in text-to-image generation, involving bias evaluation setup, bias evaluation metrics, and findings and trends. We primarily focus on the evaluation of recent popular models such as Stable Diffusion, a diffusion model operating in the latent space and using CLIP text embedding, and DALL-E 2, a diffusion model leveraging Seq2Seq architectures like BART. By analyzing recent work and discussing trends, we aim to provide insights for future work.
Related papers
- GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models [75.04426753720553]
We propose a framework to identify, quantify, and explain biases in an open set setting.
This pipeline leverages a Large Language Model (LLM) to propose biases starting from a set of captions.
We show two variations of this framework: OpenBias and GradBias.
arXiv Detail & Related papers (2024-08-29T16:51:07Z) - Analyzing Quality, Bias, and Performance in Text-to-Image Generative Models [0.0]
Despite advances in generative models, most studies ignore the presence of bias.
In this paper, we examine several text-to-image models not only by qualitatively assessing their performance in generating accurate images of human faces, groups, and specified numbers of objects but also by presenting a social bias analysis.
As expected, models with larger capacity generate higher-quality images. However, we also document the inherent gender or social biases these models possess, offering a more complete understanding of their impact and limitations.
arXiv Detail & Related papers (2024-06-28T14:10:42Z) - MoESD: Mixture of Experts Stable Diffusion to Mitigate Gender Bias [23.10522891268232]
We introduce a Mixture-of-Experts approach to mitigate gender bias in text-to-image models.
We show that our approach successfully mitigates gender bias while maintaining image quality.
arXiv Detail & Related papers (2024-06-25T14:59:31Z) - Survey of Bias In Text-to-Image Generation: Definition, Evaluation, and Mitigation [47.770531682802314]
Even simple prompts could cause T2I models to exhibit conspicuous social bias in generated images.
We present the first extensive survey on bias in T2I generative models.
We discuss how these works define, evaluate, and mitigate different aspects of bias.
arXiv Detail & Related papers (2024-04-01T10:19:05Z) - The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
We propose the Paired Stereotype Test (PST) framework, which queries T2I models to depict two individuals assigned with male-stereotyped and female-stereotyped social identities.
PST queries T2I models to depict two individuals assigned with male-stereotyped and female-stereotyped social identities.
Using PST, we evaluate two aspects of gender biases -- the well-known bias in gendered occupation and a novel aspect: bias in organizational power.
arXiv Detail & Related papers (2024-02-16T21:32:27Z) - New Job, New Gender? Measuring the Social Bias in Image Generation Models [85.26441602999014]
Image generation models are susceptible to generating content that perpetuates social stereotypes and biases.
We propose BiasPainter, a framework that can accurately, automatically and comprehensively trigger social bias in image generation models.
BiasPainter can achieve 90.8% accuracy on automatic bias detection, which is significantly higher than the results reported in previous work.
arXiv Detail & Related papers (2024-01-01T14:06:55Z) - Quantifying Bias in Text-to-Image Generative Models [49.60774626839712]
Bias in text-to-image (T2I) models can propagate unfair social representations and may be used to aggressively market ideas or push controversial agendas.
Existing T2I model bias evaluation methods only focus on social biases.
We propose an evaluation methodology to quantify general biases in T2I generative models, without any preconceived notions.
arXiv Detail & Related papers (2023-12-20T14:26:54Z) - TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models [22.076898042211305]
We propose a general approach to study and quantify a broad spectrum of biases, for any TTI model and for any prompt.
Our approach automatically identifies potential biases that might be relevant to the given prompt, and measures those biases.
We show that our method is uniquely capable of explaining complex multi-dimensional biases through semantic concepts.
arXiv Detail & Related papers (2023-12-03T02:31:37Z) - Social Biases through the Text-to-Image Generation Lens [9.137275391251517]
Text-to-Image (T2I) generation is enabling new applications that support creators, designers, and general end users of productivity software.
We take a multi-dimensional approach to studying and quantifying common social biases as reflected in the generated images.
We present findings for two popular T2I models: DALLE-v2 and Stable Diffusion.
arXiv Detail & Related papers (2023-03-30T05:29:13Z) - DALL-Eval: Probing the Reasoning Skills and Social Biases of
Text-to-Image Generation Models [73.12069620086311]
We investigate the visual reasoning capabilities and social biases of text-to-image models.
First, we measure three visual reasoning skills: object recognition, object counting, and spatial relation understanding.
Second, we assess the gender and skin tone biases by measuring the gender/skin tone distribution of generated images.
arXiv Detail & Related papers (2022-02-08T18:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.