Current Status and Trends in Image Anti-Forensics Research: A Bibliometric Analysis
- URL: http://arxiv.org/abs/2408.11365v1
- Date: Wed, 21 Aug 2024 06:21:56 GMT
- Title: Current Status and Trends in Image Anti-Forensics Research: A Bibliometric Analysis
- Authors: Yihong Lu, Jianyi Liu, Ru Zhang,
- Abstract summary: This study aims to comprehensively review the knowledge structure and research hotspots related to image anti-forensics.
The bibliometric analysis conducted using VOSViewer software has revealed the research trends, major research institutions, most influential publications, top publishing venues, and most active contributors in this field.
- Score: 5.3344933044169895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image anti-forensics is a critical topic in the field of image privacy and security research. With the increasing ease of manipulating or generating human faces in images, the potential misuse of such forged images is a growing concern. This study aims to comprehensively review the knowledge structure and research hotspots related to image anti-forensics by analyzing publications in the Web of Science Core Collection (WoSCC) database. The bibliometric analysis conducted using VOSViewer software has revealed the research trends, major research institutions, most influential publications, top publishing venues, and most active contributors in this field. This is the first comprehensive bibliometric study summarizing research trends and developments in image anti-forensics. The information highlights recent and primary research directions, serving as a reference for future research in image anti-forensics.
Related papers
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training.
Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs.
This survey aims to summarize up-to-date MIA methods in both attacks and defenses.
arXiv Detail & Related papers (2024-11-15T08:09:28Z) - A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures [50.987594546912725]
Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations.
This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures.
arXiv Detail & Related papers (2024-03-31T12:44:48Z) - Recent Advances in Digital Image and Video Forensics, Anti-forensics and Counter Anti-forensics [0.0]
Image and video forensics have recently gained increasing attention due to the proliferation of manipulated images and videos.
This survey explores image and video identification and forgery detection covering both manipulated digital media and generative media.
arXiv Detail & Related papers (2024-02-03T09:01:34Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
Recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost.
This paper provides a comprehensive review of the current media tampering detection approaches, and discusses the challenges and trends in this field for future research.
arXiv Detail & Related papers (2022-12-12T02:54:08Z) - A State-of-the-art Survey of U-Net in Microscopic Image Analysis: from
Simple Usage to Structure Mortification [18.66392155060376]
Image analysis technology is used to solve the inadvertences of artificial traditional methods in disease, wastewater treatment, environmental change monitoring analysis and convolutional neural networks (CNN)
This paper comprehensively reviews the development history of U-Net, and analyzes various research results of various segmentation methods since the emergence of U-Net.
arXiv Detail & Related papers (2022-02-14T02:52:53Z) - Fine-Grained Image Analysis with Deep Learning: A Survey [146.22351342315233]
Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer vision and pattern recognition.
This paper attempts to re-define and broaden the field of FGIA by consolidating two fundamental fine-grained research areas -- fine-grained image recognition and fine-grained image retrieval.
arXiv Detail & Related papers (2021-11-11T09:43:56Z) - Self-supervised learning methods and applications in medical imaging
analysis: A survey [0.0]
The article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with concentration on their applications in the field of medical imaging analysis.
The article covers (40) of the most recent researches in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field.
arXiv Detail & Related papers (2021-09-17T17:01:42Z) - Threat of Adversarial Attacks on Deep Learning in Computer Vision:
Survey II [86.51135909513047]
Deep Learning is vulnerable to adversarial attacks that can manipulate its predictions.
This article reviews the contributions made by the computer vision community in adversarial attacks on deep learning.
It provides definitions of technical terminologies for non-experts in this domain.
arXiv Detail & Related papers (2021-08-01T08:54:47Z) - Trends in deep learning for medical hyperspectral image analysis [2.2404871878551353]
This review paper examines publications that currently utilize deep learning to perform effective analysis of medical hyperspectral imagery.
This will comprise of reviewing the use of deep learning for classification, segmentation, and detection in order to investigate the analysis of medical hyperspectral imaging.
arXiv Detail & Related papers (2020-11-27T19:42:06Z) - Image Segmentation Using Deep Learning: A Survey [58.37211170954998]
Image segmentation is a key topic in image processing and computer vision.
There has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models.
arXiv Detail & Related papers (2020-01-15T21:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.