Are Large Language Models Geospatially Knowledgeable?
- URL: http://arxiv.org/abs/2310.13002v1
- Date: Mon, 9 Oct 2023 17:20:11 GMT
- Title: Are Large Language Models Geospatially Knowledgeable?
- Authors: Prabin Bhandari, Antonios Anastasopoulos, Dieter Pfoser
- Abstract summary: This paper investigates the extent of geospatial knowledge, awareness, and reasoning abilities encoded within Large Language Models (LLM)
With a focus on autoregressive language models, we devise experimental approaches related to (i) probing LLMs for geo-coordinates to assess geospatial knowledge, (ii) using geospatial and non-geospatial prepositions to gauge their geospatial awareness, and (iii) utilizing a multidimensional scaling (MDS) experiment to assess the models' geospatial reasoning capabilities.
- Score: 21.401931052512595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the impressive performance of Large Language Models (LLM) for various
natural language processing tasks, little is known about their comprehension of
geographic data and related ability to facilitate informed geospatial
decision-making. This paper investigates the extent of geospatial knowledge,
awareness, and reasoning abilities encoded within such pretrained LLMs. With a
focus on autoregressive language models, we devise experimental approaches
related to (i) probing LLMs for geo-coordinates to assess geospatial knowledge,
(ii) using geospatial and non-geospatial prepositions to gauge their geospatial
awareness, and (iii) utilizing a multidimensional scaling (MDS) experiment to
assess the models' geospatial reasoning capabilities and to determine locations
of cities based on prompting. Our results confirm that it does not only take
larger, but also more sophisticated LLMs to synthesize geospatial knowledge
from textual information. As such, this research contributes to understanding
the potential and limitations of LLMs in dealing with geospatial information.
Related papers
- GeoReasoner: Reasoning On Geospatially Grounded Context For Natural Language Understanding [0.32885740436059047]
GeoReasoner is a language model capable of reasoning on geospatially grounded natural language.
It first leverages Large Language Models to generate a comprehensive location description based on linguistic inferences and distance information.
It also encodes direction and distance information into spatial embedding via treating them as pseudo-sentences.
arXiv Detail & Related papers (2024-08-21T06:35:21Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - GeoGalactica: A Scientific Large Language Model in Geoscience [95.15911521220052]
Large language models (LLMs) have achieved huge success for their general knowledge and ability to solve a wide spectrum of tasks in natural language processing (NLP)
We specialize an LLM into geoscience, by further pre-training the model with a vast amount of texts in geoscience, as well as supervised fine-tuning (SFT) the resulting model with our custom collected instruction tuning dataset.
We train GeoGalactica over a geoscience-related text corpus containing 65 billion tokens, preserving as the largest geoscience-specific text corpus.
Then we fine-tune the model with 1 million pairs of instruction-tuning
arXiv Detail & Related papers (2023-12-31T09:22:54Z) - GeoLM: Empowering Language Models for Geospatially Grounded Language
Understanding [45.36562604939258]
This paper introduces GeoLM, a language model that enhances the understanding of geo-entities in natural language.
We demonstrate that GeoLM exhibits promising capabilities in supporting toponym recognition, toponym linking, relation extraction, and geo-entity typing.
arXiv Detail & Related papers (2023-10-23T01:20:01Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
We present GeoLLM, a novel method that can effectively extract geospatial knowledge from large language models.
We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods.
Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe.
arXiv Detail & Related papers (2023-10-10T00:03:23Z) - Evaluating the Effectiveness of Large Language Models in Representing
Textual Descriptions of Geometry and Spatial Relations [2.8935588665357086]
This research focuses on assessing the ability of large language models (LLMs) in representing geometries and their spatial relations.
We utilize LLMs including GPT-2 and BERT to encode the well-known text (WKT) format of geometries and then feed their embeddings into classifiers and regressors.
Experiments demonstrate that while the LLMs-generated embeddings can preserve geometry types and capture some spatial relations (up to 73% accuracy), challenges remain in estimating numeric values and retrieving spatially related objects.
arXiv Detail & Related papers (2023-07-05T03:50:08Z) - K2: A Foundation Language Model for Geoscience Knowledge Understanding
and Utilization [105.89544876731942]
Large language models (LLMs) have achieved great success in general domains of natural language processing.
We present the first-ever LLM in geoscience, K2, alongside a suite of resources developed to further promote LLM research within geoscience.
arXiv Detail & Related papers (2023-06-08T09:29:05Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
We propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE.
We collect data from open-released geographic resources and introduce six natural language understanding tasks.
We pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
arXiv Detail & Related papers (2023-05-11T03:21:56Z) - Geographic Adaptation of Pretrained Language Models [29.81557992080902]
We introduce geoadaptation, an intermediate training step that couples language modeling with geolocation prediction in a multi-task learning setup.
We show that the effectiveness of geoadaptation stems from its ability to geographically retrofit the representation space of the pretrained language models.
arXiv Detail & Related papers (2022-03-16T11:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.