論文の概要: Towards Probabilistic Inductive Logic Programming with Neurosymbolic Inference and Relaxation
- arxiv url: http://arxiv.org/abs/2408.11367v1
- Date: Wed, 21 Aug 2024 06:38:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 18:19:12.424443
- Title: Towards Probabilistic Inductive Logic Programming with Neurosymbolic Inference and Relaxation
- Title(参考訳): ニューロシンボリック推論と緩和を用いた確率的帰納的論理プログラミングに向けて
- Authors: Fieke Hillerstrom, Gertjan Burghouts,
- Abstract要約: 本稿では,欠陥や確率的背景知識を扱うPropperを提案する。
ノイズの多いイメージのリレーショナルパターンでは、Propperは8つの例からプログラムを学ぶことができる。
グラフニューラルネットワークのようなバイナリILPや統計モデルよりも優れています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many inductive logic programming (ILP) methods are incapable of learning programs from probabilistic background knowledge, e.g. coming from sensory data or neural networks with probabilities. We propose Propper, which handles flawed and probabilistic background knowledge by extending ILP with a combination of neurosymbolic inference, a continuous criterion for hypothesis selection (BCE) and a relaxation of the hypothesis constrainer (NoisyCombo). For relational patterns in noisy images, Propper can learn programs from as few as 8 examples. It outperforms binary ILP and statistical models such as a Graph Neural Network.
- Abstract(参考訳): 多くの帰納的論理プログラミング(ILP)手法は、確率的背景知識(例えば、知覚データや確率を持つニューラルネットワーク)からプログラムを学ぶことができない。
ニューロシンボリック推論、仮説選択のための連続基準(BCE)、仮説制約の緩和(NoisyCombo)を組み合わせてIPPを拡張することで、欠陥や確率的背景知識を扱うPropperを提案する。
ノイズの多いイメージのリレーショナルパターンでは、Propperは8つの例からプログラムを学ぶことができる。
グラフニューラルネットワークのようなバイナリILPや統計モデルよりも優れています。
関連論文リスト
- IID Relaxation by Logical Expressivity: A Research Agenda for Fitting Logics to Neurosymbolic Requirements [50.57072342894621]
本稿では、ニューロシンボリック・ユースケースにおける既知のデータ依存と分布制約を利用する利点について論じる。
これは、ニューロシンボリックな背景知識と、その論理に必要とされる表現性に関する一般的な疑問を伴う新しい研究課題を開く。
論文 参考訳(メタデータ) (2024-04-30T12:09:53Z) - dPASP: A Comprehensive Differentiable Probabilistic Answer Set
Programming Environment For Neurosymbolic Learning and Reasoning [0.0]
本稿では,ニューロシンボリック推論のための新しい宣言型論理プログラミングフレームワークdPASPを提案する。
非決定論的・矛盾的・不完全・統計的知識を表現できる確率論的論理プログラムのセマンティクスについて論じる。
次に、いくつかのサンプルプログラムとともに、言語での推論と学習をサポートする実装されたパッケージについて説明する。
論文 参考訳(メタデータ) (2023-08-05T19:36:58Z) - Scalable Neural-Probabilistic Answer Set Programming [18.136093815001423]
本稿では、NPP(Neural-Probabilistic Predicates)と解集合プログラミング(ASP)を介して統合された論理プログラムからなる新しいDPPLであるSLASHを紹介する。
予測性能を犠牲にすることなく、推論を高速化し、(地上)プログラムの無意味な部分を抜粋する方法を示す。
我々は、MNIST追加のベンチマークタスクやVQA(Visual Question Answering)など、様々なタスクでSLASHを評価する。
論文 参考訳(メタデータ) (2023-06-14T09:45:29Z) - Neural Probabilistic Logic Programming in Discrete-Continuous Domains [9.94537457589893]
ニューラルシンボリックAI(NeSy)は、ニューラルネットワークが論理の形でシンボリックバックグラウンド知識を利用することを可能にする。
確率論的NeSyは、論理理論と確率理論の両方でニューラルネットワークを統合することに焦点を当てている。
DeepSeaProbLogは、DPPテクニックをNeSyに組み込んだ、ニューラルネットワーク確率論理プログラミング言語である。
論文 参考訳(メタデータ) (2023-03-08T15:27:29Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic
Inference [11.393328084369783]
近年、DeepProbLogのような確率的ニューロシンボリックラーニング(PNL)のためのフレームワークが指数時間正確な推論を行う。
近似推論にスケーラブルなニューラルネットワークを用いるPNLの新しいフレームワークである近似ニューロシンボリック推論(A-NeSI)を紹介する。
論文 参考訳(メタデータ) (2022-12-23T15:24:53Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
我々は最近提案された論理ニューラルネットワーク(LNN)を用いた学習規則を提案する。
他のものと比較して、LNNは古典的なブール論理と強く結びついている。
標準ベンチマークタスクの実験では、LNNルールが極めて解釈可能であることを確認した。
論文 参考訳(メタデータ) (2021-12-06T19:38:30Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - DeepStochLog: Neural Stochastic Logic Programming [15.938755941588159]
ニューラルネットワークプログラミングにおける推論と学習は、ニューラルネットワークの確率論的論理プログラムよりもはるかに優れていることを示す。
DeepStochLogは、ニューラルネットワークのシンボリック学習タスクにおける最先端の結果を達成する。
論文 参考訳(メタデータ) (2021-06-23T17:59:04Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。