RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2408.11381v2
- Date: Mon, 9 Sep 2024 11:18:16 GMT
- Title: RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
- Authors: Xuanwang Zhang, Yunze Song, Yidong Wang, Shuyun Tang, Xinfeng Li, Zhengran Zeng, Zhen Wu, Wei Ye, Wenyuan Xu, Yue Zhang, Xinyu Dai, Shikun Zhang, Qingsong Wen,
- Abstract summary: Large Language Models (LLMs) demonstrate human-level capabilities in dialogue, reasoning, and knowledge retention.
Current research addresses this bottleneck by equipping LLMs with external knowledge, a technique known as Retrieval Augmented Generation (RAG)
RAGLAB is a modular and research-oriented open-source library that reproduces 6 existing algorithms and provides a comprehensive ecosystem for investigating RAG algorithms.
- Score: 54.707460684650584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) demonstrate human-level capabilities in dialogue, reasoning, and knowledge retention. However, even the most advanced LLMs face challenges such as hallucinations and real-time updating of their knowledge. Current research addresses this bottleneck by equipping LLMs with external knowledge, a technique known as Retrieval Augmented Generation (RAG). However, two key issues constrained the development of RAG. First, there is a growing lack of comprehensive and fair comparisons between novel RAG algorithms. Second, open-source tools such as LlamaIndex and LangChain employ high-level abstractions, which results in a lack of transparency and limits the ability to develop novel algorithms and evaluation metrics. To close this gap, we introduce RAGLAB, a modular and research-oriented open-source library. RAGLAB reproduces 6 existing algorithms and provides a comprehensive ecosystem for investigating RAG algorithms. Leveraging RAGLAB, we conduct a fair comparison of 6 RAG algorithms across 10 benchmarks. With RAGLAB, researchers can efficiently compare the performance of various algorithms and develop novel algorithms.
Related papers
- Open-RAG: Enhanced Retrieval-Augmented Reasoning with Open-Source Large Language Models [23.68266151581951]
Retrieval-Augmented Generation (RAG) has been shown to enhance the factual accuracy of Large Language Models (LLMs)
Existing methods often suffer from limited reasoning capabilities in effectively using the retrieved evidence.
We introduce a novel framework, Open-RAG, designed to enhance reasoning capabilities in RAG with open-source LLMs.
arXiv Detail & Related papers (2024-10-02T17:37:18Z) - BERGEN: A Benchmarking Library for Retrieval-Augmented Generation [26.158785168036662]
Retrieval-Augmented Generation allows to enhance Large Language Models with external knowledge.
Inconsistent benchmarking poses a major challenge in comparing approaches and understanding the impact of each component in the pipeline.
In this work, we study best practices that lay the groundwork for a systematic evaluation of RAG and present BERGEN, an end-to-end library for reproducible research standardizing RAG experiments.
arXiv Detail & Related papers (2024-07-01T09:09:27Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
Deep reinforcement learning (DRL) has been widely applied across various fields and has achieved remarkable accomplishments.
DRL faces certain limitations, including low sample efficiency and poor generalization.
We present how to leverage generative AI (GAI) to address these issues and enhance the performance of DRL algorithms.
arXiv Detail & Related papers (2024-05-31T01:25:40Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [32.820100519805486]
FlashRAG is an efficient and modular open-source toolkit designed to assist researchers in reproducing existing RAG methods and in developing their own RAG algorithms within a unified framework.
Our toolkit has various features, including customizable modular framework, rich collection of pre-implemented RAG works, comprehensive datasets, efficient auxiliary pre-processing scripts, and extensive and standard evaluation metrics.
arXiv Detail & Related papers (2024-05-22T12:12:40Z) - Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control [66.78146440275093]
Learned retrieval (LSR) is a family of neural methods that encode queries and documents into sparse lexical vectors.
We explore the application of LSR to the multi-modal domain, with a focus on text-image retrieval.
Current approaches like LexLIP and STAIR require complex multi-step training on massive datasets.
Our proposed approach efficiently transforms dense vectors from a frozen dense model into sparse lexical vectors.
arXiv Detail & Related papers (2024-02-27T14:21:56Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
We propose a novel strategy that propels Large Language Models through algorithmic reasoning pathways.
Our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself.
arXiv Detail & Related papers (2023-08-20T22:36:23Z) - Improving and Benchmarking Offline Reinforcement Learning Algorithms [87.67996706673674]
This work aims to bridge the gaps caused by low-level choices and datasets.
We empirically investigate 20 implementation choices using three representative algorithms.
We find two variants CRR+ and CQL+ achieving new state-of-the-art on D4RL.
arXiv Detail & Related papers (2023-06-01T17:58:46Z) - ALGO: Synthesizing Algorithmic Programs with LLM-Generated Oracle
Verifiers [60.6418431624873]
Large language models (LLMs) excel at implementing code from functionality descriptions but struggle with algorithmic problems.
We propose ALGO, a framework that synthesizes Algorithmic programs with LLM-Generated Oracles to guide the generation and verify their correctness.
Experiments show that when equipped with ALGO, we achieve an 8x better one-submission pass rate over the Codex model and a 2.6x better one-submission pass rate over CodeT.
arXiv Detail & Related papers (2023-05-24T00:10:15Z) - A Pragmatic Look at Deep Imitation Learning [0.3626013617212666]
We re-implement 6 different adversarial imitation learning algorithms.
We evaluate them on a widely-used expert trajectory dataset.
GAIL consistently performs well across a range of sample sizes.
arXiv Detail & Related papers (2021-08-04T06:33:10Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.