Latent Feature and Attention Dual Erasure Attack against Multi-View Diffusion Models for 3D Assets Protection
- URL: http://arxiv.org/abs/2408.11408v1
- Date: Wed, 21 Aug 2024 08:06:06 GMT
- Title: Latent Feature and Attention Dual Erasure Attack against Multi-View Diffusion Models for 3D Assets Protection
- Authors: Jingwei Sun, Xuchong Zhang, Changfeng Sun, Qicheng Bai, Hongbin Sun,
- Abstract summary: Multi-View Diffusion Models (MVDMs) enable remarkable improvements in the field of 3D geometric reconstruction.
This paper is the first to address the intellectual property infringement issue arising from MVDMs.
- Score: 5.677981100052122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-View Diffusion Models (MVDMs) enable remarkable improvements in the field of 3D geometric reconstruction, but the issue regarding intellectual property has received increasing attention due to unauthorized imitation. Recently, some works have utilized adversarial attacks to protect copyright. However, all these works focus on single-image generation tasks which only need to consider the inner feature of images. Previous methods are inefficient in attacking MVDMs because they lack the consideration of disrupting the geometric and visual consistency among the generated multi-view images. This paper is the first to address the intellectual property infringement issue arising from MVDMs. Accordingly, we propose a novel latent feature and attention dual erasure attack to disrupt the distribution of latent feature and the consistency across the generated images from multi-view and multi-domain simultaneously. The experiments conducted on SOTA MVDMs indicate that our approach achieves superior performances in terms of attack effectiveness, transferability, and robustness against defense methods. Therefore, this paper provides an efficient solution to protect 3D assets from MVDMs-based 3D geometry reconstruction.
Related papers
- FaceShield: Defending Facial Image against Deepfake Threats [11.78218702283404]
The rising use of deepfakes in criminal activities presents a significant issue, inciting widespread controversy.
We propose a proactive defense method named FaceShield, which introduces novel attack strategies targeting deepfakes generated by Diffusion Models (DMs)
Our approach consists of three main components: (i) manipulating the attention mechanism of DMs to exclude protected facial features during the denoising process, (ii) targeting prominent facial feature extraction models to enhance the robustness of our adversarial perturbations, and (iii) employing Gaussian blur and low-pass filtering techniques to improve imperceptibility while enhancing robustness against JPEG distortion.
arXiv Detail & Related papers (2024-12-13T07:20:35Z) - Real-time Identity Defenses against Malicious Personalization of Diffusion Models [39.861209610456356]
This study introduces the Real-time Identity Defender (RID), a neural network designed to generate adversarial perturbations through a single forward pass.
RID achieves unprecedented efficiency, with defense times as low as 0.12 seconds on a single NVIDIA A100 80G GPU.
Our model is envisioned to play a crucial role in safeguarding portrait rights, thereby preventing illegal and unethical uses.
arXiv Detail & Related papers (2024-12-13T04:27:08Z) - Pixel Is Not a Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models [9.905296922309157]
Diffusion Models have emerged as powerful generative models for high-quality image synthesis, with many subsequent image editing techniques based on them.
Previous works have attempted to safeguard images from diffusion-based editing by adding imperceptible perturbations.
Our work proposes a novel attack framework, AtkPDM, which exploits vulnerabilities in denoising UNets and a latent optimization strategy to enhance the naturalness of adversarial images.
arXiv Detail & Related papers (2024-08-21T17:56:34Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Multi-View Large Reconstruction Model via Geometry-Aware Positional Encoding and Attention [54.66152436050373]
We propose a Multi-view Large Reconstruction Model (M-LRM) to reconstruct high-quality 3D shapes from multi-views in a 3D-aware manner.
Specifically, we introduce a multi-view consistent cross-attention scheme to enable M-LRM to accurately query information from the input images.
Compared to previous methods, the proposed M-LRM can generate 3D shapes of high fidelity.
arXiv Detail & Related papers (2024-06-11T18:29:13Z) - Revisiting the Adversarial Robustness of Vision Language Models: a Multimodal Perspective [42.04728834962863]
Pretrained vision-language models (VLMs) like CLIP exhibit exceptional generalization across diverse downstream tasks.
Recent studies reveal their vulnerability to adversarial attacks, with defenses against text-based and multimodal attacks remaining largely unexplored.
This work presents the first comprehensive study on improving the adversarial robustness of VLMs against attacks targeting image, text, and multimodal inputs.
arXiv Detail & Related papers (2024-04-30T06:34:21Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - MIRST-DM: Multi-Instance RST with Drop-Max Layer for Robust
Classification of Breast Cancer [62.997667081978825]
We propose the Multi-instance RST with a drop-max layer, namely MIRST-DM, to learn smoother decision boundaries on small datasets.
The proposed approach was validated using a small breast ultrasound dataset with 1,190 images.
arXiv Detail & Related papers (2022-05-02T20:25:26Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle.
Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features.
Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly.
arXiv Detail & Related papers (2021-01-17T21:15:34Z) - Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp
Adversarial Attacks [154.31827097264264]
Adversarial training is a popular defense strategy against attack threat models with bounded Lp norms.
We propose Dual Manifold Adversarial Training (DMAT) where adversarial perturbations in both latent and image spaces are used in robustifying the model.
Our DMAT improves performance on normal images, and achieves comparable robustness to the standard adversarial training against Lp attacks.
arXiv Detail & Related papers (2020-09-05T06:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.