Towards Unified 3D Object Detection via Algorithm and Data Unification
- URL: http://arxiv.org/abs/2402.18573v5
- Date: Mon, 23 Sep 2024 14:55:21 GMT
- Title: Towards Unified 3D Object Detection via Algorithm and Data Unification
- Authors: Zhuoling Li, Xiaogang Xu, SerNam Lim, Hengshuang Zhao,
- Abstract summary: We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
- Score: 70.27631528933482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realizing unified 3D object detection, including both indoor and outdoor scenes, holds great importance in applications like robot navigation. However, involving various scenarios of data to train models poses challenges due to their significantly distinct characteristics, \eg, diverse geometry properties and heterogeneous domain distributions. In this work, we propose to address the challenges from two perspectives, the algorithm perspective and data perspective. In terms of the algorithm perspective, we first build a monocular 3D object detector based on the bird's-eye-view (BEV) detection paradigm, where the explicit feature projection is beneficial to addressing the geometry learning ambiguity. In this detector, we split the classical BEV detection architecture into two stages and propose an uneven BEV grid design to handle the convergence instability caused by geometry difference between scenarios. Besides, we develop a sparse BEV feature projection strategy to reduce the computational cost and a unified domain alignment method to handle heterogeneous domains. From the data perspective, we propose to incorporate depth information to improve training robustness. Specifically, we build the first unified multi-modal 3D object detection benchmark MM-Omni3D and extend the aforementioned monocular detector to its multi-modal version, which is the first unified multi-modal 3D object detector. We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively. The experimental results reveal several insightful findings highlighting the benefits of multi-modal data and confirm the effectiveness of all the proposed strategies.
Related papers
- VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
Camera-based bird-eye-view (BEV) perception paradigm has made significant progress in the autonomous driving field.
We propose IA-BEV, which integrates image-plane instance awareness into the depth estimation process within a BEV-based detector.
arXiv Detail & Related papers (2023-12-13T09:24:42Z) - Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
Multi-Camera 3D Object Detection (MC3D-Det) has gained prominence with the advent of bird's-eye view (BEV) approaches.
We propose a novel method that aligns 3D detection with 2D camera plane results, ensuring consistent and accurate detections.
arXiv Detail & Related papers (2023-10-17T15:31:28Z) - S$^3$-MonoDETR: Supervised Shape&Scale-perceptive Deformable Transformer for Monocular 3D Object Detection [21.96072831561483]
This paper proposes a novel Supervised Shape&Scale-perceptive Deformable Attention'' (S$3$-DA) module for monocular 3D object detection.
Benefiting from this, S$3$-DA effectively estimates receptive fields for query points belonging to any category, enabling them to generate robust query features.
Experiments on KITTI and Open datasets demonstrate that S$3$-DA significantly improves the detection accuracy.
arXiv Detail & Related papers (2023-09-02T12:36:38Z) - Towards Domain Generalization for Multi-view 3D Object Detection in
Bird-Eye-View [11.958753088613637]
We first analyze the causes of the domain gap for the MV3D-Det task.
To acquire a robust depth prediction, we propose to decouple the depth estimation from intrinsic parameters of the camera.
We modify the focal length values to create multiple pseudo-domains and construct an adversarial training loss to encourage the feature representation to be more domain-agnostic.
arXiv Detail & Related papers (2023-03-03T02:59:13Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
3D object detection with surrounding cameras has been a promising direction for autonomous driving.
We present SimMOD, a Simple baseline for Multi-camera Object Detection.
We conduct extensive experiments on the 3D object detection benchmark of nuScenes to demonstrate the effectiveness of SimMOD.
arXiv Detail & Related papers (2022-08-22T03:38:01Z) - Towards Model Generalization for Monocular 3D Object Detection [57.25828870799331]
We present an effective unified camera-generalized paradigm (CGP) for Mono3D object detection.
We also propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment.
Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme.
arXiv Detail & Related papers (2022-05-23T23:05:07Z) - MVM3Det: A Novel Method for Multi-view Monocular 3D Detection [0.0]
MVM3Det simultaneously estimates the 3D position and orientation of the object according to the multi-view monocular information.
We present a first dataset for multi-view 3D object detection named MVM3D.
arXiv Detail & Related papers (2021-09-22T01:31:00Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.