論文の概要: Towards "Differential AI Psychology" and in-context Value-driven Statement Alignment with Moral Foundations Theory
- arxiv url: http://arxiv.org/abs/2408.11415v1
- Date: Wed, 21 Aug 2024 08:20:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 17:59:43.075791
- Title: Towards "Differential AI Psychology" and in-context Value-driven Statement Alignment with Moral Foundations Theory
- Title(参考訳): 対話型AI心理学」と文脈内価値駆動型文書アライメントに向けて : 道徳的基礎理論による考察
- Authors: Simon Münker,
- Abstract要約: 本研究は,Moral Foundationのアンケートにおいて,パーソナライズされた言語モデルと調査参加者のアライメントについて検討する。
我々は、異なる政治的ペルソナにテキスト・トゥ・テキスト・モデルを適用し、繰り返しアンケートを行い、ペルソナとモデルの組み合わせの合成人口を生成する。
その結果, 適応型モデルでは, 政治的イデオロギーに対する調査をリードする評価が困難であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contemporary research in social sciences is increasingly utilizing state-of-the-art statistical language models to annotate or generate content. While these models perform benchmark-leading on common language tasks and show exemplary task-independent emergent abilities, transferring them to novel out-of-domain tasks is only insufficiently explored. The implications of the statistical black-box approach - stochastic parrots - are prominently criticized in the language model research community; however, the significance for novel generative tasks is not. This work investigates the alignment between personalized language models and survey participants on a Moral Foundation Theory questionnaire. We adapt text-to-text models to different political personas and survey the questionnaire repetitively to generate a synthetic population of persona and model combinations. Analyzing the intra-group variance and cross-alignment shows significant differences across models and personas. Our findings indicate that adapted models struggle to represent the survey-captured assessment of political ideologies. Thus, using language models to mimic social interactions requires measurable improvements in in-context optimization or parameter manipulation to align with psychological and sociological stereotypes. Without quantifiable alignment, generating politically nuanced content remains unfeasible. To enhance these representations, we propose a testable framework to generate agents based on moral value statements for future research.
- Abstract(参考訳): 社会科学における現代研究は、最新の統計言語モデルを利用して、コンテンツに注釈を付けたり、生成したりしている。
これらのモデルは、共通言語タスクでベンチマークリーディングを行い、模範的なタスク非依存の創発能力を示すが、それらを新しいドメイン外タスクに転送するには不十分である。
統計的ブラックボックスアプローチ(確率的オウム)の意義は言語モデル研究コミュニティにおいて顕著に批判されているが、新規な生成タスクの重要性は明らかではない。
本研究は,モーラル・ファンデーション理論のアンケートにおいて,パーソナライズされた言語モデルと調査参加者との整合性について検討する。
我々は、異なる政治的ペルソナにテキスト・トゥ・テキスト・モデルを適用し、繰り返しアンケートを行い、ペルソナとモデルの組み合わせの合成人口を生成する。
グループ内分散とクロスアライメントの分析は、モデルとペルソナの間に有意な差異を示す。
その結果, 適応型モデルでは, 政治的イデオロギーに対する調査で得られた評価を表わすのが困難であることが示唆された。
したがって、言語モデルを用いて社会的相互作用を模倣するには、心理的・社会学的ステレオタイプに合わせるために、文脈内最適化やパラメータ操作において測定可能な改善が必要である。
定量的なアライメントがなければ、政治的にニュアンスのあるコンテンツを生成することは不可能である。
これらの表現を強化するために,今後の研究のために道徳的価値文に基づくエージェントを生成するテスト可能なフレームワークを提案する。
関連論文リスト
- From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models [17.04716417556556]
本稿では,分布仮説や文脈的類似性といった基礎概念を概観する。
本稿では, ELMo, BERT, GPTなどのモデルにおいて, 静的な埋め込みと文脈的埋め込みの両方について検討する。
議論は文章や文書の埋め込みにまで拡張され、集約メソッドや生成トピックモデルをカバーする。
モデル圧縮、解釈可能性、数値エンコーディング、バイアス緩和といった高度なトピックを分析し、技術的な課題と倫理的意味の両方に対処する。
論文 参考訳(メタデータ) (2024-11-06T15:40:02Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Feature Interactions Reveal Linguistic Structure in Language Models [2.0178765779788495]
本研究では,ポストホック解釈における特徴帰属手法の文脈における特徴的相互作用について検討した。
私たちは、正規言語分類タスクで完璧にモデルをトレーニングする灰色のボックスの方法論を開発します。
特定の構成下では、いくつかの手法が実際にモデルが獲得した文法規則を明らかにすることができることを示す。
論文 参考訳(メタデータ) (2023-06-21T11:24:41Z) - Are Neural Topic Models Broken? [81.15470302729638]
トピックモデルの自動評価と人的評価の関係について検討する。
ニューラルトピックモデルは、確立された古典的手法と比較して、両方の点においてより悪くなる。
論文 参考訳(メタデータ) (2022-10-28T14:38:50Z) - Out of One, Many: Using Language Models to Simulate Human Samples [3.278541277919869]
このようなツール(GPT-3言語モデル)の「アルゴリズムバイアス」は、粒度と人口統計学的に相関していることを示す。
我々は、実際の人間の参加者から何千もの社会デマトグラフィーのバックストリーにモデルを条件付けることで「シリコンサンプル」を作成します。
論文 参考訳(メタデータ) (2022-09-14T19:53:32Z) - Schr\"odinger's Tree -- On Syntax and Neural Language Models [10.296219074343785]
言語モデルは、NLPのワークホースとして登場し、ますます流動的な生成能力を示している。
我々は、多くの次元にまたがる明瞭さの欠如を観察し、研究者が形成する仮説に影響を及ぼす。
本稿では,構文研究における様々な研究課題の意義について概説する。
論文 参考訳(メタデータ) (2021-10-17T18:25:23Z) - Ethical-Advice Taker: Do Language Models Understand Natural Language
Interventions? [62.74872383104381]
読解システムにおける自然言語介入の有効性について検討する。
本稿では,新たな言語理解タスクであるLingguistic Ethical Interventions (LEI)を提案する。
論文 参考訳(メタデータ) (2021-06-02T20:57:58Z) - Evaluating the Interpretability of Generative Models by Interactive
Reconstruction [30.441247705313575]
生成モデル表現の人間解釈可能性の定量化を課題とする。
このタスクのパフォーマンスは、ベースラインアプローチよりも、絡み合ったモデルと絡み合ったモデルをはるかに確実に区別する。
論文 参考訳(メタデータ) (2021-02-02T02:38:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。