論文の概要: Political Bias in LLMs: Unaligned Moral Values in Agent-centric Simulations
- arxiv url: http://arxiv.org/abs/2408.11415v2
- Date: Mon, 14 Jul 2025 08:34:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:21.16522
- Title: Political Bias in LLMs: Unaligned Moral Values in Agent-centric Simulations
- Title(参考訳): LLMにおける政治的バイアス:エージェント中心シミュレーションにおける不整合道徳的価値
- Authors: Simon Münker,
- Abstract要約: モーラル・ファンデーション理論アンケートにおいて,パーソナライズされた言語モデルと人間の反応がどのように一致しているかを検討する。
我々は、オープンソースの生成言語モデルを異なる政治的ペルソナに適応させ、これらのモデルを繰り返し調査し、合成データセットを生成する。
解析の結果,モデルが複数の繰り返しにまたがって不整合な結果をもたらし,高い応答差が生じることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contemporary research in social sciences increasingly utilizes state-of-the-art generative language models to annotate or generate content. While these models achieve benchmark-leading performance on common language tasks, their application to novel out-of-domain tasks remains insufficiently explored. To address this gap, we investigate how personalized language models align with human responses on the Moral Foundation Theory Questionnaire. We adapt open-source generative language models to different political personas and repeatedly survey these models to generate synthetic data sets where model-persona combinations define our sub-populations. Our analysis reveals that models produce inconsistent results across multiple repetitions, yielding high response variance. Furthermore, the alignment between synthetic data and corresponding human data from psychological studies shows a weak correlation, with conservative persona-prompted models particularly failing to align with actual conservative populations. These results suggest that language models struggle to coherently represent ideologies through in-context prompting due to their alignment process. Thus, using language models to simulate social interactions requires measurable improvements in in-context optimization or parameter manipulation to align with psychological and sociological stereotypes properly.
- Abstract(参考訳): 社会科学における現代の研究は、現在最先端の生成言語モデルを利用して、コンテンツに注釈を付けたり、生成したりしている。
これらのモデルは、共通言語タスクにおけるベンチマークによるパフォーマンスを達成するが、新しいドメイン外タスクへの応用は、まだ十分に検討されていない。
このギャップに対処するため,モーラル・ファンデーション理論アンケートにおいて,パーソナライズされた言語モデルと人間の反応がどのように一致しているかを検討する。
我々は、オープンソースの生成言語モデルを異なる政治的ペルソナに適応させ、これらのモデルを繰り返し調査し、モデルとペルソナの組み合わせが私たちのサブポピュレーションを定義する合成データセットを生成する。
解析の結果,モデルが複数の繰り返しにまたがって不整合な結果をもたらし,高い応答差が生じることがわかった。
さらに、合成データとそれに対応する心理学的データとのアライメントは弱い相関を示し、保守的なペルソナ・プロンプトモデルでは、特に実際の保守的な人口と一致しない。
これらの結果から,言語モデルでは,そのアライメントプロセスにより,文脈内処理によるイデオロギーのコヒーレントな表現が困難であることが示唆された。
したがって、言語モデルを用いて社会的相互作用をシミュレートするには、心理的および社会学的ステレオタイプを適切に整合させるために、文脈内最適化やパラメータ操作において測定可能な改善が必要である。
関連論文リスト
- Do language models accommodate their users? A study of linguistic convergence [15.958711524171362]
モデルは会話のスタイルに強く収束し、しばしば人間のベースラインに対してかなり過度に適合する。
モデル設定間の収束の連続的な変化を観察し、事前訓練されたモデルよりも少ない精度で収束する命令調整および大規模モデルについて考察する。
論文 参考訳(メタデータ) (2025-08-05T09:55:40Z) - Modeling Open-World Cognition as On-Demand Synthesis of Probabilistic Models [93.1043186636177]
我々は、人々が分散表現と象徴表現の組み合わせを使って、新しい状況に合わせた見知らぬ精神モデルを構築するという仮説を探求する。
モデル合成アーキテクチャ」という概念の計算的実装を提案する。
我々は、新しい推論データセットに基づく人間の判断のモデルとして、MSAを評価した。
論文 参考訳(メタデータ) (2025-07-16T18:01:03Z) - Hypothesis Testing for Quantifying LLM-Human Misalignment in Multiple Choice Settings [7.284860523651357]
我々は,大規模言語モデル(LLM)と実際の人間の行動の相違を,複数項目のアンケート設定で評価した。
この枠組みを,様々な公的な調査において,人々の意見をシミュレートするための一般的な言語モデルに適用する。
これにより、この言語モデルとテストされた人口との整合性に関する疑問が提起される。
論文 参考訳(メタデータ) (2025-06-17T22:04:55Z) - Prismatic Synthesis: Gradient-based Data Diversification Boosts Generalization in LLM Reasoning [77.120955854093]
我々は,データ多様性が言語モデルにおける一般化の強力な予測因子であることを示す。
モデル誘起勾配のエントロピーを通して多様性を定量化する計量であるG-Vendiを導入する。
多様な合成データを生成するためのフレームワークであるPrismatic Synthesisを提案する。
論文 参考訳(メタデータ) (2025-05-26T16:05:10Z) - Human Preferences in Large Language Model Latent Space: A Technical Analysis on the Reliability of Synthetic Data in Voting Outcome Prediction [5.774786149181393]
大規模言語モデル(LLM)における人口統計特性と即時変動が潜在世論マッピングに与える影響を解析する。
LLMが生成したデータは、実世界の人間の反応で観測された分散を再現できないことがわかった。
政治分野では、ペルソナ・ツー・パーティのマッピングは限定的な分化を示しており、結果として、調査データに見られる意見の微妙な分布に欠ける合成データとなる。
論文 参考訳(メタデータ) (2025-02-22T16:25:33Z) - From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models [17.04716417556556]
本稿では,分布仮説や文脈的類似性といった基礎概念を概観する。
本稿では, ELMo, BERT, GPTなどのモデルにおいて, 静的な埋め込みと文脈的埋め込みの両方について検討する。
議論は文章や文書の埋め込みにまで拡張され、集約メソッドや生成トピックモデルをカバーする。
モデル圧縮、解釈可能性、数値エンコーディング、バイアス緩和といった高度なトピックを分析し、技術的な課題と倫理的意味の両方に対処する。
論文 参考訳(メタデータ) (2024-11-06T15:40:02Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Computational Models to Study Language Processing in the Human Brain: A Survey [47.81066391664416]
本稿では,脳研究における計算モデルの利用の取り組みを概観し,新たな傾向を浮き彫りにしている。
我々の分析によると、すべてのデータセットで他のモデルよりも優れているモデルはない。
論文 参考訳(メタデータ) (2024-03-20T08:01:22Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Feature Interactions Reveal Linguistic Structure in Language Models [2.0178765779788495]
本研究では,ポストホック解釈における特徴帰属手法の文脈における特徴的相互作用について検討した。
私たちは、正規言語分類タスクで完璧にモデルをトレーニングする灰色のボックスの方法論を開発します。
特定の構成下では、いくつかの手法が実際にモデルが獲得した文法規則を明らかにすることができることを示す。
論文 参考訳(メタデータ) (2023-06-21T11:24:41Z) - Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural
Language Generation [68.9440575276396]
この調査は、人間のフィードバックを利用して自然言語生成を改善した最近の研究の概要を提供することを目的としている。
まず、フィードバックの形式化を包括的に導入し、この形式化に続いて既存の分類学研究を特定・整理する。
第二に、フィードバックを形式や目的によってどのように記述するかを議論し、フィードバック(トレーニングやデコード)を直接使用したり、フィードバックモデルをトレーニングしたりするための2つのアプローチについて取り上げる。
第3に、AIフィードバックの生まれたばかりの分野の概要を紹介します。これは、大きな言語モデルを利用して、一連の原則に基づいて判断し、必要最小限にします。
論文 参考訳(メタデータ) (2023-05-01T17:36:06Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
我々は,その極性に関係なく,任意の形式のフィードバックから学習し,最適化が容易な新しい手法であるChain of Hindsightを提案する。
我々は、あらゆる種類のフィードバックを文のシーケンスに変換し、それをモデルを微調整するために使用する。
そうすることで、モデルはフィードバックに基づいて出力を生成するように訓練され、負の属性やエラーを特定し修正する。
論文 参考訳(メタデータ) (2023-02-06T10:28:16Z) - Are Neural Topic Models Broken? [81.15470302729638]
トピックモデルの自動評価と人的評価の関係について検討する。
ニューラルトピックモデルは、確立された古典的手法と比較して、両方の点においてより悪くなる。
論文 参考訳(メタデータ) (2022-10-28T14:38:50Z) - Out of One, Many: Using Language Models to Simulate Human Samples [3.278541277919869]
このようなツール(GPT-3言語モデル)の「アルゴリズムバイアス」は、粒度と人口統計学的に相関していることを示す。
我々は、実際の人間の参加者から何千もの社会デマトグラフィーのバックストリーにモデルを条件付けることで「シリコンサンプル」を作成します。
論文 参考訳(メタデータ) (2022-09-14T19:53:32Z) - Schr\"odinger's Tree -- On Syntax and Neural Language Models [10.296219074343785]
言語モデルは、NLPのワークホースとして登場し、ますます流動的な生成能力を示している。
我々は、多くの次元にまたがる明瞭さの欠如を観察し、研究者が形成する仮説に影響を及ぼす。
本稿では,構文研究における様々な研究課題の意義について概説する。
論文 参考訳(メタデータ) (2021-10-17T18:25:23Z) - Ethical-Advice Taker: Do Language Models Understand Natural Language
Interventions? [62.74872383104381]
読解システムにおける自然言語介入の有効性について検討する。
本稿では,新たな言語理解タスクであるLingguistic Ethical Interventions (LEI)を提案する。
論文 参考訳(メタデータ) (2021-06-02T20:57:58Z) - Evaluating the Interpretability of Generative Models by Interactive
Reconstruction [30.441247705313575]
生成モデル表現の人間解釈可能性の定量化を課題とする。
このタスクのパフォーマンスは、ベースラインアプローチよりも、絡み合ったモデルと絡み合ったモデルをはるかに確実に区別する。
論文 参考訳(メタデータ) (2021-02-02T02:38:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。