論文の概要: A Practical Trigger-Free Backdoor Attack on Neural Networks
- arxiv url: http://arxiv.org/abs/2408.11444v1
- Date: Wed, 21 Aug 2024 08:53:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 17:49:48.103887
- Title: A Practical Trigger-Free Backdoor Attack on Neural Networks
- Title(参考訳): ニューラルネットワークによるトリガーフリーバックドア攻撃
- Authors: Jiahao Wang, Xianglong Zhang, Xiuzhen Cheng, Pengfei Hu, Guoming Zhang,
- Abstract要約: トレーニングデータへのアクセスを必要としないトリガーフリーのバックドア攻撃を提案する。
具体的には、悪意のあるデータの概念を攻撃者特定クラスの概念に組み込んだ、新しい微調整アプローチを設計する。
提案した攻撃の有効性,実用性,ステルスネスを実世界の3つのデータセットで評価した。
- 参考スコア(独自算出の注目度): 33.426207982772226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks on deep neural networks have emerged as significant security threats, especially as DNNs are increasingly deployed in security-critical applications. However, most existing works assume that the attacker has access to the original training data. This limitation restricts the practicality of launching such attacks in real-world scenarios. Additionally, using a specified trigger to activate the injected backdoor compromises the stealthiness of the attacks. To address these concerns, we propose a trigger-free backdoor attack that does not require access to any training data. Specifically, we design a novel fine-tuning approach that incorporates the concept of malicious data into the concept of the attacker-specified class, resulting the misclassification of trigger-free malicious data into the attacker-specified class. Furthermore, instead of relying on training data to preserve the model's knowledge, we employ knowledge distillation methods to maintain the performance of the infected model on benign samples, and introduce a parameter importance evaluation mechanism based on elastic weight constraints to facilitate the fine-tuning of the infected model. The effectiveness, practicality, and stealthiness of the proposed attack are comprehensively evaluated on three real-world datasets. Furthermore, we explore the potential for enhancing the attack through the use of auxiliary datasets and model inversion.
- Abstract(参考訳): ディープニューラルネットワークに対するバックドア攻撃は、特にDNNがセキュリティクリティカルなアプリケーションにますますデプロイされているため、重大なセキュリティ脅威として浮上している。
しかし、既存のほとんどの研究は、攻撃者が元のトレーニングデータにアクセスしていると仮定している。
この制限は、現実世界のシナリオでそのような攻撃を起動することの実用性を制限する。
さらに、特定のトリガーを使用して注入されたバックドアを起動すると、攻撃のステルス性が損なわれる。
これらの問題に対処するため、トレーニングデータへのアクセスを必要としないトリガーフリーのバックドア攻撃を提案する。
具体的には、攻撃者特定クラスの概念に悪意のあるデータの概念を取り入れた、新たな微調整アプローチを設計し、攻撃者特定クラスにトリガーフリーな悪意のあるデータを誤分類する。
さらに, モデル知識を維持するためにトレーニングデータに頼る代わりに, 知識蒸留法を用いて, 良性サンプル上での感染モデルの性能を維持するとともに, 弾性重み制約に基づくパラメータ重要度評価機構を導入し, 感染モデルの微調整を容易にする。
提案攻撃の有効性,実用性,ステルスネスを実世界の3つのデータセットで総合的に評価した。
さらに、補助データセットとモデルインバージョンを用いて攻撃を強化する可能性についても検討する。
関連論文リスト
- Rethinking the Vulnerabilities of Face Recognition Systems:From a Practical Perspective [53.24281798458074]
顔認識システム(FRS)は、監視やユーザー認証を含む重要なアプリケーションにますます統合されている。
最近の研究によると、FRSの脆弱性は敵(例えば、敵パッチ攻撃)やバックドア攻撃(例えば、データ中毒の訓練)であることが明らかになっている。
論文 参考訳(メタデータ) (2024-05-21T13:34:23Z) - Dullahan: Stealthy Backdoor Attack against Without-Label-Sharing Split Learning [29.842087372804905]
本稿では,非ラベル共有型スプリットラーニングアーキテクチャに適した,ステルスなバックドア攻撃戦略を提案する。
我々のSBATは、訓練中の中間パラメータの変更を控えることで、より高い攻撃ステルスネスを達成する。
論文 参考訳(メタデータ) (2024-05-21T13:03:06Z) - Mellivora Capensis: A Backdoor-Free Training Framework on the Poisoned Dataset without Auxiliary Data [29.842087372804905]
本稿では,現実シナリオにおけるバックドア攻撃対策の課題について述べる。
本稿では,モデルトレーナーが有毒なデータセット上でクリーンなモデルをトレーニングできるようにする,堅牢でクリーンなデータのないバックドア防御フレームワークであるMellivora Capensis(textttMeCa)を提案する。
論文 参考訳(メタデータ) (2024-05-21T12:20:19Z) - Unlearning Backdoor Attacks through Gradient-Based Model Pruning [10.801476967873173]
本研究では,その軽減を未学習課題として扱うことによって,バックドア攻撃に対抗する新しい手法を提案する。
このアプローチは単純さと有効性を提供し、データ可用性に制限のあるシナリオに適しています。
論文 参考訳(メタデータ) (2024-05-07T00:36:56Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Fault Injection and Safe-Error Attack for Extraction of Embedded Neural Network Models [1.2499537119440245]
モノのインターネット(IoT)における32ビットマイクロコントローラの組み込みディープニューラルネットワークモデルに焦点をあてる。
攻撃を成功させるためのブラックボックス手法を提案する。
古典的畳み込みニューラルネットワークでは、1500個の入力で最も重要なビットの少なくとも90%を回復することに成功した。
論文 参考訳(メタデータ) (2023-08-31T13:09:33Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Practical Defences Against Model Inversion Attacks for Split Neural
Networks [5.66430335973956]
本稿では,ネットワーク分割型フェデレーション学習システムが悪意のある計算サーバによるモデルインバージョン攻撃に影響を受けやすい脅威モデルについて述べる。
モデルインバージョンを防御するための簡易な付加雑音法を提案し,mnistの許容精度トレードオフにおいて攻撃効果を著しく低減できることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:12:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。