Using Part-based Representations for Explainable Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2408.11455v2
- Date: Thu, 22 Aug 2024 05:46:23 GMT
- Title: Using Part-based Representations for Explainable Deep Reinforcement Learning
- Authors: Manos Kirtas, Konstantinos Tsampazis, Loukia Avramelou, Nikolaos Passalis, Anastasios Tefas,
- Abstract summary: We propose a non-negative training approach for actor models in Deep Reinforcement Learning.
We demonstrate the effectiveness of the proposed approach using the well-known Cartpole benchmark.
- Score: 30.566205347443113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Utilizing deep learning models to learn part-based representations holds significant potential for interpretable-by-design approaches, as these models incorporate latent causes obtained from feature representations through simple addition. However, training a part-based learning model presents challenges, particularly in enforcing non-negative constraints on the model's parameters, which can result in training difficulties such as instability and convergence issues. Moreover, applying such approaches in Deep Reinforcement Learning (RL) is even more demanding due to the inherent instabilities that impact many optimization methods. In this paper, we propose a non-negative training approach for actor models in RL, enabling the extraction of part-based representations that enhance interpretability while adhering to non-negative constraints. To this end, we employ a non-negative initialization technique, as well as a modified sign-preserving training method, which can ensure better gradient flow compared to existing approaches. We demonstrate the effectiveness of the proposed approach using the well-known Cartpole benchmark.
Related papers
- Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models.
We present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models.
arXiv Detail & Related papers (2024-04-03T22:39:33Z) - The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning [37.387280102209274]
offline reinforcement learning aims to enable agents to be trained from pre-collected datasets, however, this comes with the added challenge of estimating the value of behavior not covered in the dataset.
Model-based methods offer a solution by allowing agents to collect additional synthetic data via rollouts in a learned dynamics model.
However, if the learned dynamics model is replaced by the true error-free dynamics, existing model-based methods completely fail.
We propose Reach-Aware Value Learning (RAVL), a simple and robust method that directly addresses the edge-of-reach problem.
arXiv Detail & Related papers (2024-02-19T20:38:00Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Multicriteria interpretability driven Deep Learning [0.0]
Deep Learning methods are renowned for their performances, yet their lack of interpretability prevents them from high-stakes contexts.
Recent model methods address this problem by providing post-hoc interpretability methods by reverse-engineering the model's inner workings.
We propose a Multicriteria agnostic technique that allows to control the feature effects on the model's outcome by injecting knowledge in the objective function.
arXiv Detail & Related papers (2021-11-28T09:41:13Z) - Control-Oriented Model-Based Reinforcement Learning with Implicit
Differentiation [11.219641045667055]
We propose an end-to-end approach for model learning which directly optimize the expected returns using implicit differentiation.
We provide theoretical and empirical evidence highlighting the benefits of our approach in the model misspecification regime compared to likelihood-based methods.
arXiv Detail & Related papers (2021-06-06T23:15:49Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.