COMBO: Conservative Offline Model-Based Policy Optimization
- URL: http://arxiv.org/abs/2102.08363v1
- Date: Tue, 16 Feb 2021 18:50:32 GMT
- Title: COMBO: Conservative Offline Model-Based Policy Optimization
- Authors: Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey
Levine, Chelsea Finn
- Abstract summary: Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
- Score: 120.55713363569845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based algorithms, which learn a dynamics model from logged experience
and perform some sort of pessimistic planning under the learned model, have
emerged as a promising paradigm for offline reinforcement learning (offline
RL). However, practical variants of such model-based algorithms rely on
explicit uncertainty quantification for incorporating pessimism. Uncertainty
estimation with complex models, such as deep neural networks, can be difficult
and unreliable. We overcome this limitation by developing a new model-based
offline RL algorithm, COMBO, that regularizes the value function on
out-of-support state-action tuples generated via rollouts under the learned
model. This results in a conservative estimate of the value function for
out-of-support state-action tuples, without requiring explicit uncertainty
estimation. We theoretically show that our method optimizes a lower bound on
the true policy value, that this bound is tighter than that of prior methods,
and our approach satisfies a policy improvement guarantee in the offline
setting. Through experiments, we find that COMBO consistently performs as well
or better as compared to prior offline model-free and model-based methods on
widely studied offline RL benchmarks, including image-based tasks.
Related papers
- Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Model-based Offline Policy Optimization with Adversarial Network [0.36868085124383626]
We propose a novel Model-based Offline policy optimization framework with Adversarial Network (MOAN)
Key idea is to use adversarial learning to build a transition model with better generalization.
Our approach outperforms existing state-of-the-art baselines on widely studied offline RL benchmarks.
arXiv Detail & Related papers (2023-09-05T11:49:33Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
We study a pessimistic variant of Q-learning in the context of finite-horizon Markov decision processes.
A variance-reduced pessimistic Q-learning algorithm is proposed to achieve near-optimal sample complexity.
arXiv Detail & Related papers (2022-02-28T15:39:36Z) - Revisiting Design Choices in Model-Based Offline Reinforcement Learning [39.01805509055988]
Offline reinforcement learning enables agents to leverage large pre-collected datasets of environment transitions to learn control policies.
This paper compares and designs novel protocols to investigate their interaction with other hyper parameters, such as the number of models, or imaginary rollout horizon.
arXiv Detail & Related papers (2021-10-08T13:51:34Z) - DROMO: Distributionally Robust Offline Model-based Policy Optimization [0.0]
We consider the problem of offline reinforcement learning with model-based control.
We propose distributionally robust offline model-based policy optimization (DROMO)
arXiv Detail & Related papers (2021-09-15T13:25:14Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.