論文の概要: Low-Light Object Tracking: A Benchmark
- arxiv url: http://arxiv.org/abs/2408.11463v1
- Date: Wed, 21 Aug 2024 09:27:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 17:39:23.956888
- Title: Low-Light Object Tracking: A Benchmark
- Title(参考訳): 低照度オブジェクト追跡:ベンチマーク
- Authors: Pengzhi Zhong, Xiaoyu Guo, Defeng Huang, Xiaojun Peng, Yian Li, Qijun Zhao, Shuiwang Li,
- Abstract要約: LLOTは、低照度オブジェクト追跡用に特別に設計されたベンチマークである。
LLOTは、合計132Kフレームを持つ269の挑戦的なシーケンスで構成され、それぞれにバウンディングボックスを慎重にアノテートする。
そこで我々は,H-DCPTを提案する。H-DCPT,H-DCPT,H-DCPT,H-DCPT,H-DCPT,H-DCPT,H-DCPT。
- 参考スコア(独自算出の注目度): 9.798869093713067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the field of visual tracking has made significant progress with the application of large-scale training datasets. These datasets have supported the development of sophisticated algorithms, enhancing the accuracy and stability of visual object tracking. However, most research has primarily focused on favorable illumination circumstances, neglecting the challenges of tracking in low-ligh environments. In low-light scenes, lighting may change dramatically, targets may lack distinct texture features, and in some scenarios, targets may not be directly observable. These factors can lead to a severe decline in tracking performance. To address this issue, we introduce LLOT, a benchmark specifically designed for Low-Light Object Tracking. LLOT comprises 269 challenging sequences with a total of over 132K frames, each carefully annotated with bounding boxes. This specially designed dataset aims to promote innovation and advancement in object tracking techniques for low-light conditions, addressing challenges not adequately covered by existing benchmarks. To assess the performance of existing methods on LLOT, we conducted extensive tests on 39 state-of-the-art tracking algorithms. The results highlight a considerable gap in low-light tracking performance. In response, we propose H-DCPT, a novel tracker that incorporates historical and darkness clue prompts to set a stronger baseline. H-DCPT outperformed all 39 evaluated methods in our experiments, demonstrating significant improvements. We hope that our benchmark and H-DCPT will stimulate the development of novel and accurate methods for tracking objects in low-light conditions. The LLOT and code are available at https://github.com/OpenCodeGithub/H-DCPT.
- Abstract(参考訳): 近年、ビジュアルトラッキングの分野は、大規模なトレーニングデータセットの適用によって大きな進歩を遂げている。
これらのデータセットは高度なアルゴリズムの開発を支援し、ビジュアルオブジェクト追跡の精度と安定性を高めている。
しかし、ほとんどの研究は、低地環境におけるトラッキングの課題を無視して、好ましい照明環境に重点を置いている。
低照度シーンでは、照明は劇的に変化し、ターゲットは異なるテクスチャの特徴を欠いているかもしれないし、いくつかのシナリオでは、ターゲットは直接観測できないかもしれない。
これらの要因は、追跡性能を著しく低下させる可能性がある。
この問題に対処するために、低照度オブジェクト追跡用に特別に設計されたベンチマークであるLLOTを紹介します。
LLOTは、合計132Kフレームを持つ269の挑戦的なシーケンスで構成され、それぞれにバウンディングボックスを慎重にアノテートする。
この特別に設計されたデータセットは、低照度環境でのオブジェクト追跡技術の革新と進歩を促進することを目的としており、既存のベンチマークで適切にカバーされていない課題に対処する。
LLOTにおける既存手法の性能を評価するため,39の最先端追跡アルゴリズムを用いて広範囲な試験を行った。
その結果,低照度追跡性能にかなりの差が認められた。
そこで我々は,H-DCPTを提案する。H-DCPT,H-DCPT,H-DCPT,H-DCPT,H-DCPT,H-DCPT,H-DCPT。
H-DCPTは39種類の評価方法すべてに優れ,有意な改善が認められた。
我々は,我々のベンチマークとH-DCPTが,低照度条件下での物体追跡のための新規かつ正確な手法の開発を促進することを期待する。
LLOTとコードはhttps://github.com/OpenCodeGithub/H-DCPTで公開されている。
関連論文リスト
- Camouflaged_Object_Tracking__A_Benchmark [13.001689702214573]
カモフラージュされたオブジェクト追跡手法を評価するためのベンチマークであるCOTD(Camouflaged Object Tracking dataset)を導入する。
COTDは200のシーケンスと約80,000のフレームで構成され、それぞれに詳細なバウンディングボックスが付加されている。
既存の20個の追跡アルゴリズムを評価した結果,カモフラージュした物体を用いた場合,その性能に重大な欠陥があることが判明した。
本稿では,新しいトラッキングフレームワーク HiPTrack-MLS を提案する。
論文 参考訳(メタデータ) (2024-08-25T15:56:33Z) - Tracking Reflected Objects: A Benchmark [12.770787846444406]
我々は、反射オブジェクトのトラッキングに特化したベンチマークであるTROを紹介します。
TROは、約70,000フレームの200のシーケンスを含み、それぞれにバウンディングボックスを慎重にアノテートする。
より強力なベースラインを提供するために,階層的特徴を用いて性能を向上させる新しいトラッカーであるHiP-HaTrackを提案する。
論文 参考訳(メタデータ) (2024-07-07T02:22:45Z) - LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry [52.131996528655094]
本稿では,LEAP(Long-term Effective Any Point Tracking)モジュールについて述べる。
LEAPは、動的トラック推定のために、視覚的、トラック間、時間的キューと慎重に選択されたアンカーを革新的に組み合わせている。
これらの特徴に基づき,強靭な視力計測システムLEAP-VOを開発した。
論文 参考訳(メタデータ) (2024-01-03T18:57:27Z) - A Comprehensive Study of Object Tracking in Low-Light Environments [3.508168174653255]
本稿では,ノイズ,色不均衡,低コントラストが自動物体追跡装置に与える影響について検討する。
本稿では,低照度化と低照度化を両立させて追尾性能を向上させる手法を提案する。
実験結果から,低照度合成データセットを用いてトレーニングしたトラッカーは,バニラMixFormerとSiam R-CNNより優れていた。
論文 参考訳(メタデータ) (2023-12-25T17:20:57Z) - Dense Optical Tracking: Connecting the Dots [82.79642869586587]
DOTは、ビデオにおけるポイントトラッキングの問題を解決するための、新しくてシンプルで効率的な方法である。
OmniMotionのような高度な"ユニバーサルトラッカー"を上回り、CoTrackerのような最良のポイントトラッキングアルゴリズムと同等か、あるいはそれ以上の精度で、DOTが現在の光フロー技術よりもはるかに正確であることを示す。
論文 参考訳(メタデータ) (2023-12-01T18:59:59Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
本稿では,水中ビジュアルオブジェクト追跡(UVOT)のための新しいデータセットと汎用トラッカ拡張手法を提案する。
水中環境は、一様でない照明条件、視界の低さ、鋭さの欠如、コントラストの低さ、カモフラージュ、懸濁粒子からの反射を示す。
本研究では,追尾品質の向上に特化して設計された水中画像強調アルゴリズムを提案する。
この手法により、最先端(SOTA)ビジュアルトラッカーの最大5.0%のAUCの性能が向上した。
論文 参考訳(メタデータ) (2023-08-30T07:41:26Z) - Propagate And Calibrate: Real-time Passive Non-line-of-sight Tracking [84.38335117043907]
本研究では,リレー壁のみを観察することで,見えない部屋を歩いている人を追跡する純粋受動的手法を提案する。
本研究では,リレー壁の映像の非知覚的変化を発掘するため,時間的局所的な動きの伝達に欠かせない特徴として差分フレームを導入する。
提案手法を評価するため,最初の動的受動NLOS追跡データセットであるNLOS-Trackを構築し,公開する。
論文 参考訳(メタデータ) (2023-03-21T12:18:57Z) - AVisT: A Benchmark for Visual Object Tracking in Adverse Visibility [125.77396380698639]
AVisTは、視認性の悪いさまざまなシナリオにおける視覚的トラッキングのためのベンチマークである。
AVisTは、80kの注釈付きフレームを持つ120の挑戦的なシーケンスで構成されており、18の多様なシナリオにまたがっている。
我々は、属性間でのトラッキング性能を詳細に分析し、AVisTで17の人気のトラッカーと最近のトラッカーをベンチマークした。
論文 参考訳(メタデータ) (2022-08-14T17:49:37Z) - LID 2020: The Learning from Imperfect Data Challenge Results [242.86700551532272]
Imperfect Dataワークショップからの学習は、新しいアプローチの開発に刺激を与え、促進することを目的としている。
我々は、弱教師付き学習環境における最先端のアプローチを見つけるために、3つの課題を編成する。
この技術的レポートは、課題のハイライトを要約している。
論文 参考訳(メタデータ) (2020-10-17T13:06:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。