Hint-dynamic Knowledge Distillation
- URL: http://arxiv.org/abs/2211.17059v1
- Date: Wed, 30 Nov 2022 15:03:53 GMT
- Title: Hint-dynamic Knowledge Distillation
- Authors: Yiyang Liu, Chenxin Li, Xiaotong Tu, Xinghao Ding, Yue Huang
- Abstract summary: Hint-dynamic Knowledge Distillation, dubbed HKD, excavates the knowledge from the teacher's hints in a dynamic scheme.
A meta-weight network is introduced to generate the instance-wise weight coefficients about knowledge hints.
Experiments on standard benchmarks of CIFAR-100 and Tiny-ImageNet manifest that the proposed HKD well boost the effect of knowledge distillation tasks.
- Score: 30.40008256306688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge Distillation (KD) transfers the knowledge from a high-capacity
teacher model to promote a smaller student model. Existing efforts guide the
distillation by matching their prediction logits, feature embedding, etc.,
while leaving how to efficiently utilize them in junction less explored. In
this paper, we propose Hint-dynamic Knowledge Distillation, dubbed HKD, which
excavates the knowledge from the teacher' s hints in a dynamic scheme. The
guidance effect from the knowledge hints usually varies in different instances
and learning stages, which motivates us to customize a specific hint-learning
manner for each instance adaptively. Specifically, a meta-weight network is
introduced to generate the instance-wise weight coefficients about knowledge
hints in the perception of the dynamical learning progress of the student
model. We further present a weight ensembling strategy to eliminate the
potential bias of coefficient estimation by exploiting the historical statics.
Experiments on standard benchmarks of CIFAR-100 and Tiny-ImageNet manifest that
the proposed HKD well boost the effect of knowledge distillation tasks.
Related papers
- Adaptive Explicit Knowledge Transfer for Knowledge Distillation [17.739979156009696]
We show that the performance of logit-based knowledge distillation can be improved by effectively delivering the probability distribution for the non-target classes from the teacher model.
We propose a new loss that enables the student to learn explicit knowledge along with implicit knowledge in an adaptive manner.
Experimental results demonstrate that the proposed method, called adaptive explicit knowledge transfer (AEKT) method, achieves improved performance compared to the state-of-the-art KD methods.
arXiv Detail & Related papers (2024-09-03T07:42:59Z) - LAKD-Activation Mapping Distillation Based on Local Learning [12.230042188890838]
This paper proposes a novel knowledge distillation framework, Local Attention Knowledge Distillation (LAKD)
LAKD more efficiently utilizes the distilled information from teacher networks, achieving higher interpretability and competitive performance.
We conducted experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets, and the results show that our LAKD method significantly outperforms existing methods.
arXiv Detail & Related papers (2024-08-21T09:43:27Z) - Comparative Knowledge Distillation [102.35425896967791]
Traditional Knowledge Distillation (KD) assumes readily available access to teacher models for frequent inference.
We propose Comparative Knowledge Distillation (CKD), which encourages student models to understand the nuanced differences in a teacher model's interpretations of samples.
CKD consistently outperforms state of the art data augmentation and KD techniques.
arXiv Detail & Related papers (2023-11-03T21:55:33Z) - Knowledge Distillation via Token-level Relationship Graph [12.356770685214498]
We propose a novel method called Knowledge Distillation with Token-level Relationship Graph (TRG)
By employing TRG, the student model can effectively emulate higher-level semantic information from the teacher model.
We conduct experiments to evaluate the effectiveness of the proposed method against several state-of-the-art approaches.
arXiv Detail & Related papers (2023-06-20T08:16:37Z) - AD-KD: Attribution-Driven Knowledge Distillation for Language Model
Compression [26.474962405945316]
We present a novel attribution-driven knowledge distillation approach to compress pre-trained language models.
To enhance the knowledge transfer of model reasoning and generalization, we explore multi-view attribution distillation on all potential decisions of the teacher.
arXiv Detail & Related papers (2023-05-17T07:40:12Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
Knowledge Distillation (KD) for object detection aims to train a compact detector by transferring knowledge from a teacher model.
We propose inconsistent knowledge distillation (IKD) which aims to distill knowledge inherent in the teacher model's counter-intuitive perceptions.
Our method outperforms state-of-the-art KD baselines on one-stage, two-stage and anchor-free object detectors.
arXiv Detail & Related papers (2022-09-20T16:36:28Z) - A Closer Look at Knowledge Distillation with Features, Logits, and
Gradients [81.39206923719455]
Knowledge distillation (KD) is a substantial strategy for transferring learned knowledge from one neural network model to another.
This work provides a new perspective to motivate a set of knowledge distillation strategies by approximating the classical KL-divergence criteria with different knowledge sources.
Our analysis indicates that logits are generally a more efficient knowledge source and suggests that having sufficient feature dimensions is crucial for the model design.
arXiv Detail & Related papers (2022-03-18T21:26:55Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
We show that knowledge distillation can be used directly to boost the performance of state-of-the-art models in adversarial robustness.
We present Adversarial Knowledge Distillation (AKD), a new framework to improve a model's robust performance.
arXiv Detail & Related papers (2022-03-14T15:02:13Z) - All About Knowledge Graphs for Actions [82.39684757372075]
We propose a better understanding of knowledge graphs (KGs) that can be utilized for zero-shot and few-shot action recognition.
We study three different construction mechanisms for KGs: action embeddings, action-object embeddings, visual embeddings.
We present extensive analysis of the impact of different KGs on different experimental setups.
arXiv Detail & Related papers (2020-08-28T01:44:01Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
Knowledge distillation involves extracting "dark knowledge" from a teacher network to guide the learning of a student network.
We show that the seemingly different self-supervision task can serve as a simple yet powerful solution.
By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student.
arXiv Detail & Related papers (2020-06-12T12:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.