Mutagenesis screen to map the functions of parameters of Large Language Models
- URL: http://arxiv.org/abs/2408.11494v2
- Date: Tue, 29 Oct 2024 21:03:22 GMT
- Title: Mutagenesis screen to map the functions of parameters of Large Language Models
- Authors: Yue Hu, Kai Hu, Patrick X. Zhao, Javed Khan, Chengming Xu,
- Abstract summary: We used a mutagenesis screen approach inspired by the methods used in biological studies to investigate Llama2-7b and Zephyr.
Mutations that produced phenotypes, especially those with severe outcomes, tended to cluster along axes.
In Zephyr, certain mutations consistently resulted in poetic or conversational rather than descriptive outputs.
- Score: 10.19684167876245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have significantly advanced artificial intelligence, excelling in numerous tasks. Although the functionality of a model is inherently tied to its parameters, a systematic method for exploring the connections between the parameters and the functionality are lacking. Models sharing similar structure and parameter counts exhibit significant performance disparities across various tasks, prompting investigations into the varying patterns that govern their performance. We adopted a mutagenesis screen approach inspired by the methods used in biological studies, to investigate Llama2-7b and Zephyr. This technique involved mutating elements within the models' matrices to their maximum or minimum values to examine the relationship between model parameters and their functionalities. Our research uncovered multiple levels of fine structures within both models. Many matrices showed a mixture of maximum and minimum mutations following mutagenesis, but others were predominantly sensitive to one type. Notably, mutations that produced phenotypes, especially those with severe outcomes, tended to cluster along axes. Additionally, the location of maximum and minimum mutations often displayed a complementary pattern on matrix in both models, with the Gate matrix showing a unique two-dimensional asymmetry after rearrangement. In Zephyr, certain mutations consistently resulted in poetic or conversational rather than descriptive outputs. These "writer" mutations grouped according to the high-frequency initial word of the output, with a marked tendency to share the row coordinate even when they are in different matrices. Our findings affirm that the mutagenesis screen is an effective tool for deciphering the complexities of large language models and identifying unexpected ways to expand their potential, providing deeper insights into the foundational aspects of AI systems.
Related papers
- AdaMMS: Model Merging for Heterogeneous Multimodal Large Language Models with Unsupervised Coefficient Optimization [86.8133939108057]
We propose AdaMMS, a novel model merging method tailored for heterogeneous MLLMs.
Our method tackles the challenges in three steps: mapping, merging and searching.
As the first model merging method capable of merging heterogeneous MLLMs without labeled data, AdaMMS outperforms previous model merging methods on various vision-language benchmarks.
arXiv Detail & Related papers (2025-03-31T05:13:02Z) - Superpose Singular Features for Model Merging [29.728307343119894]
Superpose Features from Task Matrix (SFTM) is a novel approach that superposes features from individual task models into a merged model.
Our method consistently outperforms existing methods, achieving superior performance and enhanced out-of-distribution generalization.
arXiv Detail & Related papers (2025-02-15T07:05:55Z) - Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
Mutagenicity is a concern due to its association with genetic mutations which can result in a variety of negative consequences.
In this work, we introduce a novel stacked ensemble based mutagenicity prediction model.
arXiv Detail & Related papers (2024-09-03T09:14:21Z) - EulerFormer: Sequential User Behavior Modeling with Complex Vector Attention [88.45459681677369]
We propose a novel transformer variant with complex vector attention, named EulerFormer.
It provides a unified theoretical framework to formulate both semantic difference and positional difference.
It is more robust to semantic variations and possesses moresuperior theoretical properties in principle.
arXiv Detail & Related papers (2024-03-26T14:18:43Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Multi-constrained Symmetric Nonnegative Latent Factor Analysis for
Accurately Representing Large-scale Undirected Weighted Networks [2.1797442801107056]
An Undirected Weighted Network (UWN) is frequently encountered in a big-data-related application.
An analysis model should carefully consider its symmetric-topology for describing an UWN's intrinsic symmetry.
This paper proposes a Multi-constrained Symmetric Nonnegative Latent-factor-analysis model with two-fold ideas.
arXiv Detail & Related papers (2023-06-06T14:13:16Z) - Multi-modal Differentiable Unsupervised Feature Selection [5.314466196448187]
In multi-modal measurements, many observed variables in both modalities are often nuisance and do not carry information about the phenomenon of interest.
Here, we propose a multi-modal unsupervised feature selection framework: identifying informative variables based on coupled high-dimensional measurements.
We incorporate the scores with differentiable gates that mask nuisance features and enhance the accuracy of the structure captured by the graph Laplacian.
arXiv Detail & Related papers (2023-03-16T15:11:17Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - A Graphical Model for Fusing Diverse Microbiome Data [2.385985842958366]
We introduce a flexible multinomial-Gaussian generative model for jointly modeling such count data.
We present a computationally scalable variational Expectation-Maximization (EM) algorithm for inferring the latent variables and the parameters of the model.
arXiv Detail & Related papers (2022-08-21T17:54:39Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - A Discrete Variational Recurrent Topic Model without the
Reparametrization Trick [16.54912614895861]
We show how to learn a neural topic model with discrete random variables.
We show improved perplexity and document understanding across multiple corpora.
arXiv Detail & Related papers (2020-10-22T20:53:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.