Heterogeneous Multi-Task Gaussian Cox Processes
- URL: http://arxiv.org/abs/2308.15364v1
- Date: Tue, 29 Aug 2023 15:01:01 GMT
- Title: Heterogeneous Multi-Task Gaussian Cox Processes
- Authors: Feng Zhou, Quyu Kong, Zhijie Deng, Fengxiang He, Peng Cui, Jun Zhu
- Abstract summary: We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
- Score: 61.67344039414193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel extension of multi-task Gaussian Cox processes
for modeling multiple heterogeneous correlated tasks jointly, e.g.,
classification and regression, via multi-output Gaussian processes (MOGP). A
MOGP prior over the parameters of the dedicated likelihoods for classification,
regression and point process tasks can facilitate sharing of information
between heterogeneous tasks, while allowing for nonparametric parameter
estimation. To circumvent the non-conjugate Bayesian inference in the MOGP
modulated heterogeneous multi-task framework, we employ the data augmentation
technique and derive a mean-field approximation to realize closed-form
iterative updates for estimating model parameters. We demonstrate the
performance and inference on both 1D synthetic data as well as 2D urban data of
Vancouver.
Related papers
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
We propose a novel framework for the modeling of heteroscedastic covariance functions.
We employ variational inference to approximate the posterior and facilitate posterior predictive modeling.
We show that our proposed framework offers a robust and versatile tool for a wide array of applications.
arXiv Detail & Related papers (2023-08-29T15:06:47Z) - Deep Graph Reprogramming [112.34663053130073]
"Deep graph reprogramming" is a model reusing task tailored for graph neural networks (GNNs)
We propose an innovative Data Reprogramming paradigm alongside a Model Reprogramming paradigm.
arXiv Detail & Related papers (2023-04-28T02:04:29Z) - A Graphical Model for Fusing Diverse Microbiome Data [2.385985842958366]
We introduce a flexible multinomial-Gaussian generative model for jointly modeling such count data.
We present a computationally scalable variational Expectation-Maximization (EM) algorithm for inferring the latent variables and the parameters of the model.
arXiv Detail & Related papers (2022-08-21T17:54:39Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Collaborative Nonstationary Multivariate Gaussian Process Model [2.362467745272567]
We propose a novel model called the collaborative nonstationary Gaussian process model(CNMGP)
CNMGP allows us to model data in which outputs do not share a common input set, with a computational complexity independent of the size of the inputs and outputs.
We show that our model generally pro-vides better predictive performance than the state-of-the-art, and also provides estimates of time-varying correlations that differ across outputs.
arXiv Detail & Related papers (2021-06-01T18:25:22Z) - Cluster-Specific Predictions with Multi-Task Gaussian Processes [4.368185344922342]
A model involving Gaussian processes (GPs) is introduced to handle multi-task learning, clustering, and prediction.
The model is instantiated as a mixture of multi-task GPs with common mean processes.
The overall algorithm, called MagmaClust, is publicly available as an R package.
arXiv Detail & Related papers (2020-11-16T11:08:59Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.