LARR: Large Language Model Aided Real-time Scene Recommendation with Semantic Understanding
- URL: http://arxiv.org/abs/2408.11523v1
- Date: Wed, 21 Aug 2024 10:56:26 GMT
- Title: LARR: Large Language Model Aided Real-time Scene Recommendation with Semantic Understanding
- Authors: Zhizhong Wan, Bin Yin, Junjie Xie, Fei Jiang, Xiang Li, Wei Lin,
- Abstract summary: Large Language Model Aided Real-time Scene Recommendation(LARR)
This paper introduces Large Language Model Aided Real-time Scene Recommendation(LARR)
- Score: 19.510385758079966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Click-Through Rate (CTR) prediction is crucial for Recommendation System(RS), aiming to provide personalized recommendation services for users in many aspects such as food delivery, e-commerce and so on. However, traditional RS relies on collaborative signals, which lacks semantic understanding to real-time scenes. We also noticed that a major challenge in utilizing Large Language Models (LLMs) for practical recommendation purposes is their efficiency in dealing with long text input. To break through the problems above, we propose Large Language Model Aided Real-time Scene Recommendation(LARR), adopt LLMs for semantic understanding, utilizing real-time scene information in RS without requiring LLM to process the entire real-time scene text directly, thereby enhancing the efficiency of LLM-based CTR modeling. Specifically, recommendation domain-specific knowledge is injected into LLM and then RS employs an aggregation encoder to build real-time scene information from separate LLM's outputs. Firstly, a LLM is continual pretrained on corpus built from recommendation data with the aid of special tokens. Subsequently, the LLM is fine-tuned via contrastive learning on three kinds of sample construction strategies. Through this step, LLM is transformed into a text embedding model. Finally, LLM's separate outputs for different scene features are aggregated by an encoder, aligning to collaborative signals in RS, enhancing the performance of recommendation model.
Related papers
- Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - A Decoding Acceleration Framework for Industrial Deployable LLM-based Recommender Systems [49.588316022381385]
We propose a Decoding Acceleration Framework for LLM-based Recommendation (dubbed DARE), with Customized Retrieval Pool to improve retrieval efficiency and Relaxed Verification to increase the acceptance rate of draft tokens.
DARE has been deployed to online advertising scenarios within a large-scale commercial environment, achieving a 3.45x speedup while maintaining the downstream performance.
arXiv Detail & Related papers (2024-08-11T02:31:13Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - Parrot: Efficient Serving of LLM-based Applications with Semantic Variable [11.894203842968745]
Parrot is a service system that focuses on the end-to-end experience of LLM-based applications.
A Semantic Variable annotates an input/output variable in the prompt of a request, and creates the data pipeline when connecting multiple LLM requests.
arXiv Detail & Related papers (2024-05-30T09:46:36Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
We focus on solving one of the most important tasks in the field of speech processing, with speech foundation encoders and large language models (LLM)
Recent works have complex designs such as compressing the output temporally for the speech encoder, tackling modal alignment for the projector, and utilizing parameter-efficient fine-tuning for the LLM.
We found that delicate designs are not necessary, while an embarrassingly simple composition of off-the-shelf speech encoder, LLM, and the only trainable linear projector is competent for the ASR task.
arXiv Detail & Related papers (2024-02-13T23:25:04Z) - LLaFS: When Large Language Models Meet Few-Shot Segmentation [32.86287519276783]
We propose LLaFS, the first attempt to leverage large language models (LLMs) in few-shot segmentation.
In contrast to the conventional few-shot segmentation methods that only rely on the limited and biased information from the annotated support images, LLaFS directly uses the LLM to segment images in a few-shot manner.
LLaFS achieves state-of-the-art results on multiple datasets, showing the potential of using LLMs for few-shot computer vision tasks.
arXiv Detail & Related papers (2023-11-28T16:31:27Z) - Harnessing the Zero-Shot Power of Instruction-Tuned Large Language Model in End-to-End Speech Recognition [23.172469312225694]
We propose to utilize an instruction-tuned large language model (LLM) for guiding the text generation process in automatic speech recognition (ASR)
The proposed model is built on the joint CTC and attention architecture, with the LLM serving as a front-end feature extractor for the decoder.
Experimental results show that the proposed LLM-guided model achieves a relative gain of approximately 13% in word error rates across major benchmarks.
arXiv Detail & Related papers (2023-09-19T11:10:50Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.