RConE: Rough Cone Embedding for Multi-Hop Logical Query Answering on Multi-Modal Knowledge Graphs
- URL: http://arxiv.org/abs/2408.11526v2
- Date: Mon, 26 Aug 2024 07:46:25 GMT
- Title: RConE: Rough Cone Embedding for Multi-Hop Logical Query Answering on Multi-Modal Knowledge Graphs
- Authors: Mayank Kharbanda, Rajiv Ratn Shah, Raghava Mutharaju,
- Abstract summary: Multi-hop query answering over a Knowledge Graph involves traversing one or more hops from the start node to answer a query.
We propose RConE, an embedding method to capture the multi-modal information needed to answer a query.
We are the first to introduce logical constructs in querying MMKGs and to answer queries that involve sub-entities of multi-modal entities as the answer.
- Score: 30.94793132285142
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-hop query answering over a Knowledge Graph (KG) involves traversing one or more hops from the start node to answer a query. Path-based and logic-based methods are state-of-the-art for multi-hop question answering. The former is used in link prediction tasks. The latter is for answering complex logical queries. The logical multi-hop querying technique embeds the KG and queries in the same embedding space. The existing work incorporates First Order Logic (FOL) operators, such as conjunction ($\wedge$), disjunction ($\vee$), and negation ($\neg$), in queries. Though current models have most of the building blocks to execute the FOL queries, they cannot use the dense information of multi-modal entities in the case of Multi-Modal Knowledge Graphs (MMKGs). We propose RConE, an embedding method to capture the multi-modal information needed to answer a query. The model first shortlists candidate (multi-modal) entities containing the answer. It then finds the solution (sub-entities) within those entities. Several existing works tackle path-based question-answering in MMKGs. However, to our knowledge, we are the first to introduce logical constructs in querying MMKGs and to answer queries that involve sub-entities of multi-modal entities as the answer. Extensive evaluation of four publicly available MMKGs indicates that RConE outperforms the current state-of-the-art.
Related papers
- DAGE: DAG Query Answering via Relational Combinator with Logical Constraints [24.60431781360608]
We propose a query embedding method for DAG queries called DAGE.
DAGE combines the possibly multiple paths between two nodes into a single path with a trainable operator.
We show that it is possible to implement DAGE on top of existing query embedding methods.
arXiv Detail & Related papers (2024-10-29T15:02:48Z) - Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
Knowledge Graph Query Embedding (KGQE) aims to embed First-Order Logic (FOL) queries in a low-dimensional KG space for complex reasoning over incomplete KGs.
Recent studies integrate various external information (such as entity types and relation context) to better capture the logical semantics of FOL queries.
We propose an effective Query Instruction Parsing (QIPP) that captures latent query patterns from code-like query instructions.
arXiv Detail & Related papers (2024-10-27T03:18:52Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Query2Particles: Knowledge Graph Reasoning with Particle Embeddings [49.64006979045662]
We propose a query embedding method to answer complex logical queries on knowledge graphs with missing edges.
The answer entities are selected according to the similarities between the entity embeddings and the query embedding.
A complex KG query answering method, Q2P, is proposed to retrieve diverse answers from different areas over the embedding space.
arXiv Detail & Related papers (2022-04-27T11:16:08Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - Query Embedding on Hyper-relational Knowledge Graphs [0.4779196219827507]
Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs.
We extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries.
arXiv Detail & Related papers (2021-06-15T14:08:50Z) - Query2box: Reasoning over Knowledge Graphs in Vector Space using Box
Embeddings [84.0206612938464]
query2box is an embedding-based framework for reasoning over arbitrary queries on incomplete knowledge graphs.
We show that query2box is capable of handling arbitrary logical queries with $wedge$, $vee$, $exists$ in a scalable manner.
We demonstrate the effectiveness of query2box on three large KGs and show that query2box achieves up to 25% relative improvement over the state of the art.
arXiv Detail & Related papers (2020-02-14T11:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.