論文の概要: The Vizier Gaussian Process Bandit Algorithm
- arxiv url: http://arxiv.org/abs/2408.11527v1
- Date: Wed, 21 Aug 2024 11:06:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 17:27:26.590561
- Title: The Vizier Gaussian Process Bandit Algorithm
- Title(参考訳): Vizier Gaussian Process Banditアルゴリズム
- Authors: Xingyou Song, Qiuyi Zhang, Chansoo Lee, Emily Fertig, Tzu-Kuo Huang, Lior Belenki, Greg Kochanski, Setareh Ariafar, Srinivas Vasudevan, Sagi Perel, Daniel Golovin,
- Abstract要約: Google Vizierは、数百万の最適化を実行し、Googleの多くのリサーチとプロダクションシステムを加速した。
本稿では,Open Source Vizierが提供するデフォルトアルゴリズムの実装の詳細と設計選択について論じる。
- 参考スコア(独自算出の注目度): 18.715197792862526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Google Vizier has performed millions of optimizations and accelerated numerous research and production systems at Google, demonstrating the success of Bayesian optimization as a large-scale service. Over multiple years, its algorithm has been improved considerably, through the collective experiences of numerous research efforts and user feedback. In this technical report, we discuss the implementation details and design choices of the current default algorithm provided by Open Source Vizier. Our experiments on standardized benchmarks reveal its robustness and versatility against well-established industry baselines on multiple practical modes.
- Abstract(参考訳): Google Vizierは、数百万の最適化を実行し、Googleで多くのリサーチとプロダクションシステムを加速し、大規模サービスとしてのベイジアン最適化の成功を実証した。
長年にわたり、そのアルゴリズムは、多くの研究活動とユーザフィードバックの集合的な経験を通じて、大幅に改善されてきた。
本稿では,Open Source Vizierが提供するデフォルトアルゴリズムの実装詳細と設計選択について論じる。
標準化されたベンチマークに関する我々の実験は、複数の実践モードで確立された業界ベースラインに対する堅牢性と汎用性を明らかにする。
関連論文リスト
- Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
本研究では,非測定抽象特性に関する専門家の嗜好を代理モデルに組み込むための,人間とAIの協調型ベイズフレームワークを提案する。
優先判断において、誤った/誤解を招く専門家バイアスを処理できる効率的な戦略を提供する。
論文 参考訳(メタデータ) (2024-02-27T09:23:13Z) - Combining Multi-Fidelity Modelling and Asynchronous Batch Bayesian
Optimization [10.29946890434873]
本稿では,マルチ忠実度と非同期バッチ手法を組み合わせたアルゴリズムを提案する。
本研究では,アルゴリズムの動作を実証的に研究し,単一忠実度バッチ法や複数忠実度シーケンシャル法より優れていることを示す。
そこで本研究では,コインセルを用いた実験により,ポーチセルの電極材料を最適性能に設計し,バッテリ性能を近似する手法を提案する。
論文 参考訳(メタデータ) (2022-11-11T12:02:40Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - Efficient computation of the Knowledge Gradient for Bayesian
Optimization [1.0497128347190048]
One-shot Hybrid KGは、これまで提案されていたアイデアをいくつか組み合わせた新しいアプローチであり、計算が安価で、強力で効率的である。
すべての実験はBOTorchで実施され、同等または改善された性能で計算オーバーヘッドを劇的に削減した。
論文 参考訳(メタデータ) (2022-09-30T10:39:38Z) - Portfolio Search and Optimization for General Strategy Game-Playing [58.896302717975445]
ローリングホライズン進化アルゴリズムに基づく最適化とアクション選択のための新しいアルゴリズムを提案する。
エージェントのパラメータとポートフォリオセットの最適化について,N-tuple Bandit Evolutionary Algorithmを用いて検討する。
エージェントの性能分析により,提案手法はすべてのゲームモードによく一般化し,他のポートフォリオ手法よりも優れることが示された。
論文 参考訳(メタデータ) (2021-04-21T09:28:28Z) - Revisiting Bayesian Optimization in the light of the COCO benchmark [1.4467794332678539]
本稿では,共通かつあまり一般的ではない設計選択のbo(gaussian process based)の性能への影響について,大規模な調査を行う。
この研究のために開発されたコードは、RパッケージDiceOptimの新バージョン(v2.1.1)をCRANで利用可能にしている。
論文 参考訳(メタデータ) (2021-03-30T19:45:18Z) - A global-local neighborhood search algorithm and tabu search for
flexible job shop scheduling problem [3.946442574906068]
この研究はGLNSA(Global-local neighborhood search algorithm)と呼ばれる新しいメタヒューリスティックアルゴリズムを提案する。
提案アルゴリズムは,Nopt1地区の簡易版を実装したタブ検索と補完する。
実験の結果,提案アルゴリズムの性能は,最近発表された他のアルゴリズムと比較すると良好であった。
論文 参考訳(メタデータ) (2020-10-23T23:08:51Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and
Open Challenges [0.0]
新たな最適化アルゴリズムの研究は、そのようなアルゴリズムが現実世界や産業に関係のある課題に対処する能力を改善するという動機に基づいていることが多い。
多くのテスト問題とベンチマークスイートが開発され、アルゴリズムの比較評価に利用されている。
論文 参考訳(メタデータ) (2020-07-01T15:09:40Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
実験者は、グローバルな最適な場所に関する知識を得ることができる。
グローバル最適化に関する専門家の事前知識をベイズ最適化に組み込む方法は不明である。
効率の良いベイズ最適化手法は、大域的最適の後方分布の後方サンプリングによって提案されている。
論文 参考訳(メタデータ) (2020-02-26T01:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。