Positional Prompt Tuning for Efficient 3D Representation Learning
- URL: http://arxiv.org/abs/2408.11567v1
- Date: Wed, 21 Aug 2024 12:18:34 GMT
- Title: Positional Prompt Tuning for Efficient 3D Representation Learning
- Authors: Shaochen Zhang, Zekun Qi, Runpei Dong, Xiuxiu Bai, Xing Wei,
- Abstract summary: Point cloud analysis has achieved significant development and is well-performed in multiple downstream tasks like point cloud classification and segmentation, etc.
Being conscious of the simplicity of the position encoding structure in Transformer-based architectures, we attach importance to the position encoding as a high-dimensional part and the patch encoder to offer multi-scale information.
Our Proposed method of PEFT tasks, namely, with only 1.05% of parameters for training, gets state-of-the-art results in several mainstream datasets, such as 95.01% accuracy in the ScanObjectNN OBJ_BG dataset.
- Score: 16.25423192020736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point cloud analysis has achieved significant development and is well-performed in multiple downstream tasks like point cloud classification and segmentation, etc. Being conscious of the simplicity of the position encoding structure in Transformer-based architectures, we attach importance to the position encoding as a high-dimensional part and the patch encoder to offer multi-scale information. Together with the sequential Transformer, the whole module with position encoding comprehensively constructs a multi-scale feature abstraction module that considers both the local parts from the patch and the global parts from center points as position encoding. With only a few parameters, the position embedding module fits the setting of PEFT (Parameter-Efficient Fine-Tuning) tasks pretty well. Thus we unfreeze these parameters as a fine-tuning part. At the same time, we review the existing prompt and adapter tuning methods, proposing a fresh way of prompts and synthesizing them with adapters as dynamic adjustments. Our Proposed method of PEFT tasks, namely PPT, with only 1.05% of parameters for training, gets state-of-the-art results in several mainstream datasets, such as 95.01% accuracy in the ScanObjectNN OBJ_BG dataset. Codes will be released at https://github.com/zsc000722/PPT.
Related papers
- iConFormer: Dynamic Parameter-Efficient Tuning with Input-Conditioned Adaptation [15.97351561456467]
In this paper, we propose a novel PEFT approach, input-Conditioned transFormer, termed iConFormer.
We introduce an input-Conditioned Network (iCoN) in the dynamic adapter that enables instance-level feature transformation.
To be specific, iCoN generates channel-wise convolutional kernels for each feature and transform it using adaptive convolution process to effectively capture task-specific and fine-grained details tailor to downstream tasks.
arXiv Detail & Related papers (2024-09-04T16:06:23Z) - Soft Masked Transformer for Point Cloud Processing with Skip Attention-Based Upsampling [28.218242268501]
We argue that integrating task-level information into the encoding stage significantly enhances performance.
To facilitate effective communication between features from the encoding and decoding layers, we introduce a skip-attention-based up-sampling block.
We achieve state-of-the-art semantic segmentation results of 73.4% mIoU on S3DIS Area 5 and 62.4% mIoU on SWAN dataset.
arXiv Detail & Related papers (2024-03-21T04:34:24Z) - Point-PEFT: Parameter-Efficient Fine-Tuning for 3D Pre-trained Models [46.42092771753465]
We introduce Point-PEFT, a novel framework for adapting point cloud pre-trained models with minimal learnable parameters.
Specifically, for a pre-trained 3D model, we freeze most of its parameters, and only tune the newly added PEFT modules on downstream tasks.
arXiv Detail & Related papers (2023-10-04T16:49:36Z) - Improving Position Encoding of Transformers for Multivariate Time Series
Classification [5.467400475482668]
We propose a new absolute position encoding method dedicated to time series data called time Absolute Position.
We then propose a novel time series classification (MTSC) model combining tAPE/eRPE and convolution-based input encoding named ConvTran to improve the position and data embedding of time series data.
arXiv Detail & Related papers (2023-05-26T05:30:04Z) - Position-Guided Point Cloud Panoptic Segmentation Transformer [118.17651196656178]
This work begins by applying this appealing paradigm to LiDAR-based point cloud segmentation and obtains a simple yet effective baseline.
We observe that instances in the sparse point clouds are relatively small to the whole scene and often have similar geometry but lack distinctive appearance for segmentation, which are rare in the image domain.
The method, named Position-guided Point cloud Panoptic segmentation transFormer (P3Former), outperforms previous state-of-the-art methods by 3.4% and 1.2% on Semantic KITTI and nuScenes benchmark, respectively.
arXiv Detail & Related papers (2023-03-23T17:59:02Z) - DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets [95.84755169585492]
We present Dynamic Sparse Voxel Transformer (DSVT), a single-stride window-based voxel Transformer backbone for outdoor 3D perception.
Our model achieves state-of-the-art performance with a broad range of 3D perception tasks.
arXiv Detail & Related papers (2023-01-15T09:31:58Z) - AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware
Transformers [94.11915008006483]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We design a new model, called PoinTr, which adopts a Transformer encoder-decoder architecture for point cloud completion.
Our method attains 6.53 CD on PCN, 0.81 CD on ShapeNet-55 and 0.392 MMD on real-world KITTI.
arXiv Detail & Related papers (2023-01-11T16:14:12Z) - Stratified Transformer for 3D Point Cloud Segmentation [89.9698499437732]
Stratified Transformer is able to capture long-range contexts and demonstrates strong generalization ability and high performance.
To combat the challenges posed by irregular point arrangements, we propose first-layer point embedding to aggregate local information.
Experiments demonstrate the effectiveness and superiority of our method on S3DIS, ScanNetv2 and ShapeNetPart datasets.
arXiv Detail & Related papers (2022-03-28T05:35:16Z) - Stage-Aware Feature Alignment Network for Real-Time Semantic
Segmentation of Street Scenes [59.81228011432776]
We present a novel Stage-aware Feature Alignment Network (SFANet) for real-time semantic segmentation of street scenes.
By taking into account the unique role of each stage in the decoder, a novel stage-aware Feature Enhancement Block (FEB) is designed to enhance spatial details and contextual information of feature maps from the encoder.
Experimental results show that the proposed SFANet exhibits a good balance between accuracy and speed for real-time semantic segmentation of street scenes.
arXiv Detail & Related papers (2022-03-08T11:46:41Z) - Robust Partial-to-Partial Point Cloud Registration in a Full Range [12.86951061306046]
We propose Graph Matching Consensus Network (GMCNet), which estimates pose-invariant correspondences for fullrange 1 Partial-to-Partial point cloud Registration (PPR)
GMCNet encodes point descriptors for each point cloud individually without using crosscontextual information, or ground truth correspondences for training.
arXiv Detail & Related papers (2021-11-30T17:56:24Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution.
We gather homogeneous points that have identical semantic categories and close votes for the geometric centroids.
The proposed approach is proposal-free, and instead exploits a convolution process that adapts to the spatial and semantic characteristics of each instance.
arXiv Detail & Related papers (2021-07-18T09:05:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.