論文の概要: Quantum error correction for unresolvable spin ensemble
- arxiv url: http://arxiv.org/abs/2408.11628v1
- Date: Wed, 21 Aug 2024 13:56:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 16:47:35.171843
- Title: Quantum error correction for unresolvable spin ensemble
- Title(参考訳): 未解決スピンアンサンブルの量子誤差補正
- Authors: Harsh Sharma, Himadri Shekhar Dhar, Hoi-Kwan Lau,
- Abstract要約: 未解決スピンアンサンブルに対する量子誤差補正手法を提案する。
基本的に混合された励起状態の重ね合わせを使用することで、個々のエラーと集合的エラーの両方から保護できるコードを見つける。
本稿では,集合的計測と制御のみで情報回復を実現する方法を示し,メモリ寿命の延長とロス耐性センシングへの応用を解説する。
- 参考スコア(独自算出の注目度): 0.6554326244334868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin ensembles are promising quantum technological platforms, but their utility relies on the ability to perform quantum error correction (QEC) for the specific decoherence in these systems. Typical QEC for ensembles requires addressing individually resolved qubits, but this is practically challenging in most realistic architectures. Here, we propose QEC schemes for unresolvable spin ensembles. By using degenerate superpositions of excited states, which are fundamentally mixed, we find codes that can protect against both individual and collective errors, including dephasing, decay, and pumping. We show how information recovery can be achieved with only collective measurement and control, and illustrate its applications in extending memory lifetime and loss-tolerant sensing.
- Abstract(参考訳): スピンアンサンブルは有望な量子技術プラットフォームであるが、それらのユーティリティはこれらのシステムの特定のデコヒーレンスに対して量子エラー補正(QEC)を実行する能力に依存している。
アンサンブルのための典型的なQECは、個々の解決されたキュービットに対処する必要があるが、ほとんどの現実的なアーキテクチャでは事実上難しい。
ここでは、未解決スピンアンサンブルに対するQECスキームを提案する。
基本的に混ざり合っている励起状態の縮退重畳を用いることで、縮退、崩壊、汲み上げなどの個人的および集団的誤りを防げるコードを見つける。
本稿では,集団計測と制御のみで情報回復を実現する方法を示し,メモリ寿命の延長とロス耐性センシングへの応用を解説する。
関連論文リスト
- Generalized Gibbs ensembles in weakly interacting dissipative systems and digital quantum computers [0.0]
本稿では,積分可能性の活性化を示すためにデジタル量子コンピュータを提案する。
散逸は、周期的にアンシラをリセットする結合系の量子ビットによって実現される。
我々は、トロッタライズド・ダイナミクスに有効な運動方程式を導出する。
論文 参考訳(メタデータ) (2024-06-24T18:00:11Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Real-time quantum error correction beyond break-even [0.0]
完全安定かつ誤り訂正された論理量子ビットの量子コヒーレンスは、量子誤り訂正プロセスに関わる全ての不完全な量子成分の量子コヒーレンスよりも著しく長いことを示す。
この性能は、超伝導量子回路の製作やモデルフリー強化学習など、いくつかの領域における革新と組み合わせて実現している。
論文 参考訳(メタデータ) (2022-11-16T18:58:12Z) - Decoherence and Quantum Error Correction for Quantum Computing and
Communications [0.0]
量子誤り訂正符号(QECC)による量子情報の保護は、完全に動作する量子コンピュータを構築する上で最重要となる。
デコヒーレンスの性質は研究され、数学的にモデル化され、QECCはより優れた誤り訂正能力を示すように設計され、最適化されている。
論文 参考訳(メタデータ) (2022-02-17T11:26:58Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
本稿では,ロバストフィッティングのためのハイブリッド量子古典アルゴリズムを提案する。
私たちのコアコントリビューションは、整数プログラムの列を解く、新しい堅牢な適合式である。
実際の量子コンピュータを用いて得られた結果について述べる。
論文 参考訳(メタデータ) (2022-01-25T05:59:24Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
長距離エンタングゲートを用いた普遍量子計算のためのプラットフォームとして、2種の超低温原子種を混合して提案する。
1つの原子種は、情報の基本単位を形成する可変長の局所化された集合スピンを実現する。
本稿では,ゴッテマン・キタエフ・プレスキル符号の有限次元バージョンについて論じ,集合スピンに符号化された量子情報を保護する。
論文 参考訳(メタデータ) (2020-10-29T20:17:14Z) - Protecting a Bosonic Qubit with Autonomous Quantum Error Correction [2.1806044218454854]
原理的には、量子系内の散逸を調整することで、量子エラー補正を自律的かつ連続的に実現することができる。
ここでは超伝導空洞のSchr"odinger cat様多光子状態の論理量子ビットを符号化する。
この受動的プロトコルは、単光子損失に対する自律的な補正を実現し、多光子量子ビットのコヒーレンス時間を2倍に向上させる。
論文 参考訳(メタデータ) (2020-04-20T14:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。