Supervised Representation Learning towards Generalizable Assembly State Recognition
- URL: http://arxiv.org/abs/2408.11700v1
- Date: Wed, 21 Aug 2024 15:24:40 GMT
- Title: Supervised Representation Learning towards Generalizable Assembly State Recognition
- Authors: Tim J. Schoonbeek, Goutham Balachandran, Hans Onvlee, Tim Houben, Shao-Hsuan Hung, Jacek Kustra, Peter H. N. de With, Fons van der Sommen,
- Abstract summary: Assembly state recognition facilitates the execution of assembly procedures, offering feedback to enhance efficiency and minimize errors.
This paper proposes an approach based on representation learning and the novel intermediate-state informed loss function modification (ISIL)
ISIL leverages unlabeled transitions between states and demonstrates significant improvements in clustering and classification performance.
- Score: 5.852028557154309
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assembly state recognition facilitates the execution of assembly procedures, offering feedback to enhance efficiency and minimize errors. However, recognizing assembly states poses challenges in scalability, since parts are frequently updated, and the robustness to execution errors remains underexplored. To address these challenges, this paper proposes an approach based on representation learning and the novel intermediate-state informed loss function modification (ISIL). ISIL leverages unlabeled transitions between states and demonstrates significant improvements in clustering and classification performance for all tested architectures and losses. Despite being trained exclusively on images without execution errors, thorough analysis on error states demonstrates that our approach accurately distinguishes between correct states and states with various types of execution errors. The integration of the proposed algorithm can offer meaningful assistance to workers and mitigate unexpected losses due to procedural mishaps in industrial settings. The code is available at: https://timschoonbeek.github.io/state_rec
Related papers
- Find the Assembly Mistakes: Error Segmentation for Industrial Applications [6.6512300549196235]
We propose StateDiffNet, which localizes assembly errors based on detecting the differences between a (correct) intended assembly state and a test image from a similar viewpoint.
The proposed approach is the first to correctly localize assembly errors taken from real ego-centric video data for both states and error types that are never presented during training.
arXiv Detail & Related papers (2024-08-23T09:51:55Z) - STAT: Towards Generalizable Temporal Action Localization [56.634561073746056]
Weakly-supervised temporal action localization (WTAL) aims to recognize and localize action instances with only video-level labels.
Existing methods suffer from severe performance degradation when transferring to different distributions.
We propose GTAL, which focuses on improving the generalizability of action localization methods.
arXiv Detail & Related papers (2024-04-20T07:56:21Z) - Weakly Supervised Learners for Correction of AI Errors with Provable
Performance Guarantees [38.36817319051697]
We present a new methodology for handling AI errors by introducing weakly supervised AI error correctors with a priori performance guarantees.
These AI correctors are auxiliary maps whose role is to moderate the decisions of some previously constructed underlying classifier by either approving or rejecting its decisions.
A key technical focus of the work is in providing performance guarantees for these new AI correctors through bounds on the probabilities of incorrect decisions.
arXiv Detail & Related papers (2024-01-31T20:36:13Z) - Visual Imitation Learning with Calibrated Contrastive Representation [44.63125396964309]
Adversarial Imitation Learning (AIL) allows the agent to reproduce expert behavior with low-dimensional states and actions.
This paper proposes a simple and effective solution by incorporating contrastive representative learning into visual AIL framework.
arXiv Detail & Related papers (2024-01-21T04:18:30Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
Characterizing errors in easily interpretable terms gives insight into whether a classifier is prone to making systematic errors.
We propose to discover those patterns of tokens that distinguish correct and erroneous predictions.
We show that our method, Premise, performs well in practice.
arXiv Detail & Related papers (2023-11-18T00:24:26Z) - HCL-TAT: A Hybrid Contrastive Learning Method for Few-shot Event
Detection with Task-Adaptive Threshold [18.165302114575212]
We propose a novel Hybrid Contrastive Learning method with a Task-Adaptive Threshold (abbreviated as HCLTAT)
In this paper, we propose a novel Hybrid Contrastive Learning method with a Task-Adaptive Threshold (abbreviated as HCLTAT), which enables discriminative representation learning with a two-view contrastive loss.
Experiments on the benchmark dataset FewEvent demonstrate the superiority of our method to achieve better results compared to the state-of-the-arts.
arXiv Detail & Related papers (2022-10-17T07:37:38Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries.
We first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations.
Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries.
arXiv Detail & Related papers (2022-07-14T17:46:37Z) - Factual Error Correction for Abstractive Summaries Using Entity
Retrieval [57.01193722520597]
We propose an efficient factual error correction system RFEC based on entities retrieval post-editing process.
RFEC retrieves the evidence sentences from the original document by comparing the sentences with the target summary.
Next, RFEC detects the entity-level errors in the summaries by considering the evidence sentences and substitutes the wrong entities with the accurate entities from the evidence sentences.
arXiv Detail & Related papers (2022-04-18T11:35:02Z) - Real-world Person Re-Identification via Degradation Invariance Learning [111.86722193694462]
Person re-identification (Re-ID) in real-world scenarios usually suffers from various degradation factors, e.g., low-resolution, weak illumination, blurring and adverse weather.
We propose a degradation invariance learning framework for real-world person Re-ID.
By introducing a self-supervised disentangled representation learning strategy, our method is able to simultaneously extract identity-related robust features.
arXiv Detail & Related papers (2020-04-10T07:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.