論文の概要: Deviations from the Nash equilibrium and emergence of tacit collusion in a two-player optimal execution game with reinforcement learning
- arxiv url: http://arxiv.org/abs/2408.11773v1
- Date: Wed, 21 Aug 2024 16:54:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 16:08:22.568998
- Title: Deviations from the Nash equilibrium and emergence of tacit collusion in a two-player optimal execution game with reinforcement learning
- Title(参考訳): 強化学習を伴う2プレイヤー最適実行ゲームにおけるナッシュ平衡からの逸脱と暗黙の共謀の発生
- Authors: Fabrizio Lillo, Andrea Macrì,
- Abstract要約: 2つの自律的エージェントが市場の影響下で同じ資産を最適に清算することを学習するシナリオについて検討する。
その結果,エージェントが学んだ戦略は,対応する市場影響ゲームのナッシュ均衡から大きく逸脱していることがわかった。
市場のボラティリティの異なるレベルがエージェントのパフォーマンスと彼らが発見する均衡にどのように影響するかを考察する。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of reinforcement learning algorithms in financial trading is becoming increasingly prevalent. However, the autonomous nature of these algorithms can lead to unexpected outcomes that deviate from traditional game-theoretical predictions and may even destabilize markets. In this study, we examine a scenario in which two autonomous agents, modeled with Double Deep Q-Learning, learn to liquidate the same asset optimally in the presence of market impact, using the Almgren-Chriss (2000) framework. Our results show that the strategies learned by the agents deviate significantly from the Nash equilibrium of the corresponding market impact game. Notably, the learned strategies exhibit tacit collusion, closely aligning with the Pareto-optimal solution. We further explore how different levels of market volatility influence the agents' performance and the equilibria they discover, including scenarios where volatility differs between the training and testing phases.
- Abstract(参考訳): 金融取引における強化学習アルゴリズムの利用が増えている。
しかし、これらのアルゴリズムの自律性は、従来のゲーム理論の予測から逸脱し、市場を不安定化させるような予期せぬ結果をもたらす可能性がある。
本研究では,Double Deep Q-Learningをモデルとした2つの自律エージェントが市場影響の有無で同じ資産を最適に清算することを学ぶシナリオについて,Almgren-Chriss (2000) フレームワークを用いて検討した。
その結果,エージェントが学んだ戦略は,対応する市場影響ゲームのナッシュ均衡から大きく逸脱していることがわかった。
特に、学習した戦略は暗黙の共謀を示し、パレート最適解と密接に一致している。
さらに、市場のボラティリティのレベルがエージェントのパフォーマンスと彼らが発見する均衡にどのように影響するかについても検討する。
関連論文リスト
- Towards Multi-Agent Reinforcement Learning driven Over-The-Counter
Market Simulations [16.48389671789281]
オーバー・ザ・カウンタ市場において,流動性提供者と流動性取扱業者が相互作用するゲームについて検討した。
互いに対戦することで、深層強化学習主体のエージェントは創発的な行動を学ぶ。
遷移性仮定の下で,多エージェントポリシー勾配アルゴリズムの収束率を示す。
論文 参考訳(メタデータ) (2022-10-13T17:06:08Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
本研究では,エージェント種別のメタゲームに対して,エプシロン・ナッシュ平衡である安定解を求めることができることを示す。
私たちのアプローチはより柔軟で、例えば市場クリア化のような非現実的な仮定は必要ありません。
当社のアプローチは、実際のビジネスサイクルモデル、DGEモデルの代表的なファミリー、100人の労働者消費者、10社の企業、税金と再分配を行う政府で実証しています。
論文 参考訳(メタデータ) (2022-01-03T17:00:17Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - Learning Equilibria in Matching Markets from Bandit Feedback [139.29934476625488]
不確実性の下で安定した市場成果を学習するためのフレームワークとアルゴリズムを開発する。
私たちの研究は、大規模なデータ駆動の市場において、いつ、どのように安定したマッチングが生じるかを明らかにするための第一歩を踏み出します。
論文 参考訳(メタデータ) (2021-08-19T17:59:28Z) - Robust Risk-Sensitive Reinforcement Learning Agents for Trading Markets [23.224860573461818]
トレーディングマーケットは、強化学習エージェントを展開するための現実世界の金融アプリケーションである。
リスクに敏感なペイオフを考慮したマルチエージェント学習のための経験的ゲーム理論解析を拡張した最初の研究である。
論文 参考訳(メタデータ) (2021-07-16T19:15:13Z) - Multi-Stage Decentralized Matching Markets: Uncertain Preferences and
Strategic Behaviors [91.3755431537592]
本稿では、現実世界のマッチング市場で最適な戦略を学ぶためのフレームワークを開発する。
我々は,不確実性レベルが特徴の福祉対フェアネストレードオフが存在することを示す。
シングルステージマッチングと比較して、マルチステージマッチングで参加者がより良くなることを証明します。
論文 参考訳(メタデータ) (2021-02-13T19:25:52Z) - On Information Asymmetry in Competitive Multi-Agent Reinforcement
Learning: Convergence and Optimality [78.76529463321374]
協調的でない2つのQ-ラーニングエージェントの相互作用システムについて検討する。
この情報非対称性は、集団学習の安定した結果をもたらす可能性があることを示す。
論文 参考訳(メタデータ) (2020-10-21T11:19:53Z) - Time your hedge with Deep Reinforcement Learning [0.0]
深層強化学習(DRL)は、市場情報とヘッジ戦略の割り当て決定の間のダイナミックな依存関係を作成することで、この課題に対処することができる。
i)行動決定に追加の文脈情報を使用し、(ii)共通の資産運用者の1日のラグ転倒を考慮し、ヘッジの再均衡を図るための観察と行動の間に1期間の遅れがあり、(iii)アンカードウォークフォワードトレーニングと呼ばれる反復的な試験方法により、安定性とロバスト性の観点から完全にテストされており、(iv)時系列のkフォールドクロスバリデーションと同様に、ヘッジの活用を可能にする。
論文 参考訳(メタデータ) (2020-09-16T06:43:41Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
署名された注文フローに対して,注文フローの不均衡の増加に伴い,価格への影響は線形に増大することを示す。
さらに,注文フローにサインされた市場への影響を予測するために,機械学習アルゴリズムを実装した。
この結果から,機械学習モデルを用いて財務変数を推定できることが示唆された。
論文 参考訳(メタデータ) (2020-04-17T14:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。