Timeline and Boundary Guided Diffusion Network for Video Shadow Detection
- URL: http://arxiv.org/abs/2408.11785v1
- Date: Wed, 21 Aug 2024 17:16:21 GMT
- Title: Timeline and Boundary Guided Diffusion Network for Video Shadow Detection
- Authors: Haipeng Zhou, Honqiu Wang, Tian Ye, Zhaohu Xing, Jun Ma, Ping Li, Qiong Wang, Lei Zhu,
- Abstract summary: Video Shadow Detection (VSD) aims to detect the shadow masks with frame sequence.
Motivated by this, we propose a Timeline and Boundary Guided Diffusion (TBGDiff) network for VSD.
- Score: 22.173407949204137
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Video Shadow Detection (VSD) aims to detect the shadow masks with frame sequence. Existing works suffer from inefficient temporal learning. Moreover, few works address the VSD problem by considering the characteristic (i.e., boundary) of shadow. Motivated by this, we propose a Timeline and Boundary Guided Diffusion (TBGDiff) network for VSD where we take account of the past-future temporal guidance and boundary information jointly. In detail, we design a Dual Scale Aggregation (DSA) module for better temporal understanding by rethinking the affinity of the long-term and short-term frames for the clipped video. Next, we introduce Shadow Boundary Aware Attention (SBAA) to utilize the edge contexts for capturing the characteristics of shadows. Moreover, we are the first to introduce the Diffusion model for VSD in which we explore a Space-Time Encoded Embedding (STEE) to inject the temporal guidance for Diffusion to conduct shadow detection. Benefiting from these designs, our model can not only capture the temporal information but also the shadow property. Extensive experiments show that the performance of our approach overtakes the state-of-the-art methods, verifying the effectiveness of our components. We release the codes, weights, and results at \url{https://github.com/haipengzhou856/TBGDiff}.
Related papers
- SwinShadow: Shifted Window for Ambiguous Adjacent Shadow Detection [90.4751446041017]
We present SwinShadow, a transformer-based architecture that fully utilizes the powerful shifted window mechanism for detecting adjacent shadows.
The whole process can be divided into three parts: encoder, decoder, and feature integration.
Experiments on three shadow detection benchmark datasets, SBU, UCF, and ISTD, demonstrate that our network achieves good performance in terms of balance error rate (BER)
arXiv Detail & Related papers (2024-08-07T03:16:33Z) - TASeg: Temporal Aggregation Network for LiDAR Semantic Segmentation [80.13343299606146]
We propose a Temporal LiDAR Aggregation and Distillation (TLAD) algorithm, which leverages historical priors to assign different aggregation steps for different classes.
To make full use of temporal images, we design a Temporal Image Aggregation and Fusion (TIAF) module, which can greatly expand the camera FOV.
We also develop a Static-Moving Switch Augmentation (SMSA) algorithm, which utilizes sufficient temporal information to enable objects to switch their motion states freely.
arXiv Detail & Related papers (2024-07-13T03:00:16Z) - Detect Any Shadow: Segment Anything for Video Shadow Detection [105.19693622157462]
We propose ShadowSAM, a framework for fine-tuning segment anything model (SAM) to detect shadows.
By combining it with long short-term attention mechanism, we extend its capability for efficient video shadow detection.
Our method exhibits accelerated inference speed compared to previous video shadow detection approaches.
arXiv Detail & Related papers (2023-05-26T07:39:10Z) - SCOTCH and SODA: A Transformer Video Shadow Detection Framework [12.42397422225366]
Shadows in videos are difficult to detect because of the large shadow deformation between frames.
We introduce the shadow deformation attention trajectory (SODA), a new type of video self-attention module.
We also present a new shadow contrastive learning mechanism (SCOTCH) which aims at guiding the network to learn a unified shadow representation.
arXiv Detail & Related papers (2022-11-13T12:23:07Z) - Motion-aware Memory Network for Fast Video Salient Object Detection [15.967509480432266]
We design a space-time memory (STM)-based network, which extracts useful temporal information of the current frame from adjacent frames as the temporal branch of VSOD.
In the encoding stage, we generate high-level temporal features by using high-level features from the current and its adjacent frames.
In the decoding stage, we propose an effective fusion strategy for spatial and temporal branches.
The proposed model does not require optical flow or other preprocessing, and can reach a speed of nearly 100 FPS during inference.
arXiv Detail & Related papers (2022-08-01T15:56:19Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - R2D: Learning Shadow Removal to Enhance Fine-Context Shadow Detection [64.10636296274168]
Current shadow detection methods perform poorly when detecting shadow regions that are small, unclear or have blurry edges.
We propose a new method called Restore to Detect (R2D), where a deep neural network is trained for restoration (shadow removal)
We show that our proposed method R2D improves the shadow detection performance while being able to detect fine context better compared to the other recent methods.
arXiv Detail & Related papers (2021-09-20T15:09:22Z) - Temporal Feature Warping for Video Shadow Detection [30.82493923485278]
We propose a simple but powerful method to better aggregate information temporally.
We use an optical flow based warping module to align and then combine features between frames.
We apply this warping module across multiple deep-network layers to retrieve information from neighboring frames including both local details and high-level semantic information.
arXiv Detail & Related papers (2021-07-29T19:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.